首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The CO2 adsorption capacity of the low-cost solid sorbents of waste tire char (TC) and chicken waste char (CW) was compared with commercial active carbon (AC) and 5 ? zeolite (ZA) using thermogravimetric analysis (TG), pressurized TG, and differential scanning calorimetry (DSC). The sorbents were degassed in a TG up to 150 °C to release all gases on the surface of the sample, then cooled down to the designed temperature for adsorption. TG results indicated that the CO2 adsorption capacity of TC was higher than that of CW, but lower than those of AC and ZA. The maximum adsorption rate of TC at 50 °C was 0.61% min−1, lower than that of AC, but higher than that of CW, 0.44% min−1. The maximum adsorption rate of ZA at 50 °C was 3.1% min−1. When the pressure was over 4 bar, the adsorption rate of ZA was lower than that of TC and AC. At 30 bar, the total CO2 uptake of TC was 20 wt%, higher than that of CW and ZA but lower than that of AC. The temperature, nitrogen concentration, and water content also influenced the CO2 adsorption capacity of sorbents to some extent. DSC results showed that adsorption was an exothermic process. The heat of CO2 adsorption per mole of CO2 of TC at 50 °C was 24 kJ mol−1 while the ZA had the largest heat of adsorption at 38 kJ mol−1. Comparing the characteristics of TC and CW, TC may be a promising sorbent for removal of CO2.  相似文献   

2.
3.
The thermoanalytical curves (TA), i.e. TG, DTG and DTA for pure cephalexin and its mixtures with talc, magnesium stearate, starch and microcrystalline cellulose, respectively, were drawn up in air and nitrogen at a heating rate of 10 °C min−1. The thermal degradation was discussed on the basis of EGA data obtained for a heating rate of 20 °C min−1. Until 250 °C, the TA curves are similar for all mixtures, up this some peculiarities depending on the additive appears. These certify that between the pure cephalosporin and the excipients do not exists any interaction until 250 °C. A kinetic analysis was performed using the TG/DTG data in air for the first step of cephalexin decomposition at four heating rates: 5, 7, 10 and 12 °C min−1. The data processing strategy was based on a differential method (Friedman), an integral method (Flynn–Wall–Ozawa) and a nonparametric kinetic method (NPK). This last one allowed an intrinsic separation of the temperature, respective conversion dependence on the reaction rate and less speculative discussions on the kinetic model. All there methods had furnished very near values of the activation energy, this being an argument for a single thermooxidative degradation at the beginning (192–200 °C).  相似文献   

4.
For dehydration of CaC2O4·H2O and thermal dissociation of CaCO3 carried out in Mettler Toledo TGA/SDTA-851e/STARe thermobalance similar experimental conditions was applied: 9–10 heating rates, q = 0.2, 0.5, 1, 2, 3, 6, 12, 24, 30, and 36 K min−1, for sample mass 10 mg, in nitrogen atmosphere (100 ml min−1) and in Al2O3 crucibles (70 μl). There were analyzed changes of typical TGA quantities, i.e., T, TG and DTG in the form of the relative rate of reaction/process intended to be analyzed on-line by formula (10). For comparative purposes, the relationship between experimental and equilibrium conversion degrees was used (for P = P\ominus P = P^{{\ominus}} ). It was found that the solid phase decomposition proceeds in quasi-equilibrium state and enthalpy of reaction is easily “obscured” by activation energy. For small stoichiometric coefficients on gas phase side (here: ν = 1) discussed decomposition processes have typical features of phenomena analyzable by known thermokinetic methods.  相似文献   

5.
A new inorganically template metaphosphate of Co(II) complex has been synthesized and characterized by different measurements such as DSC, FT-IR, C–H–N–O–S, ESR, TG-DTA and X-RD. Differential Scanning Calorimeter (DSC) elucidated negative specific heat of the system and has used to evaluate some thermo dynamical constants like activation energy (E a), frequency factor (A), enthalpy and entropy of that system. The specific heat capacity of the system is measured both in atmospheric O2 and N2 atmosphere at different heating rates of 278, 283, 293 and 298 K min−1 in room atmosphere and 288 K min−1 in N2 atmosphere.  相似文献   

6.
This article demonstrates how important it is to find the optimal heating conditions when electrospun organic/inorganic composite fibers are annealed to get ceramic nanofibers in appropriate quality (crystal structure, composition, and morphology) and to avoid their disintegration. Polyvinylpyrrolidone [PVP, (C6H9NO) n ] and ammonium metatungstate [AMT, (NH4)6[H2W12O40nH2O] nanofibers were prepared by electrospinning aqueous solutions of PVP and AMT. The as-spun fibers and their annealing were characterized by TG/DTA-MS, XRD, SEM, Raman, and FTIR measurements. The 400–600 nm thick and tens of micrometer long PVP/AMT fibers decomposed thermally in air in four steps, and pure monoclinic WO3 nanofibers formed between 500 and 600 °C. When a too high heating rate and heating temperature (10 °C min−1, 600 °C) were used, the WO3 nanofibers completely disintegrated. At lower heating rate but too high temperature (1 °C min−1, 600 °C), the fibers broke into rods. If the heating rate was adequate, but the annealing temperature was too low (1 °C min−1, 500 °C), the nanofiber morphology was excellent, but the sample was less crystalline. When the optimal heating rate and temperature (1 °C min−1, 550 °C) were applied, WO3 nanofibers with excellent morphology (250 nm thick and tens of micrometer long nanofibers, which consisted of 20–80 nm particles) and crystallinity (monoclinic WO3) were obtained. The FTIR and Raman measurements confirmed that with these heating parameters the organic matter was effectively removed from the nanofibers and monoclinic WO3 was present in a highly crystalline and ordered form.  相似文献   

7.
The thermal behavior of nicotinic acid under inert conditions was investigated by TG, FTIR and TG/DSC-FTIR. The results of TG/DSC-FTIR and FTIR indicated that the thermal behavior of nicotinic acid can be divided into four stages: a solid-solid phase transition (176–198°C), the process of sublimation (198–232°C), melting (232–263°C) and evaporation (263–325°C) when experiment was performed at the heating rate of 20 K min−1. The thermal analysis kinetic calculation of the second stage (sublimation) and the fourth stage (evaporation) were carried out respectively. Heating rates of 1, 1.5, 2 and 3 K min−1 were used to determine the sublimation kinetics. The apparent activation energy, pre-exponential factor and the most probable model function were obtained by using the master plots method. The results indicated that sublimation process can be described by one-dimensional phase boundary reaction, g(α)=α. And the ‘kinetic triplet’ of evaporation process was also given at higher heating rates of 15, 20, 25, 30 and 35 K min−1. Evaporation process can be described by model of nucleation and nucleus growing, .  相似文献   

8.
Thermogravimetry (TG) was used in this study to evaluate thermal and catalytic pyrolysis of Atmospheric Petroleum Residue (ATR) which can be found in the state of Rio Grande do Norte/Brazil, after a process of atmospheric distillation of petroleum. The utilized sample in the process of catalytic pyrolysis was Al-MCM-41, a mesoporous material. The procedures for obtaining the thermogravimetric curves were performed in a thermobalance with heating rates of 5, 10, and 20 °C min−1. From TG, the activation energy was determined using the Flynn–Wall kinetic method, which decreased from 161 kJ mol−1, for the pure ATR, to 71 kJ mol−1, in the presence of the Al-MCM-41, showing the efficiency of the catalyst in the pyrolysis of Atmospheric Petroleum Residue.  相似文献   

9.
The ligand [2-(1,2,3,4-thiatriazole-5-yliminomethyl)-phenol] (L) is a schiff base derived from condensation reaction of 1,2,3,4-thiatriazole-5-ylamine and Salicylaldehyde. Synthesis of the ligand (L) and the complex [Cu(II)(L)2]·2H2O have been studied in our previous work (Bharti et al., Asian J Chem 23(2):773–776, 2011). Thermal decomposition behavior of synthesized Cu(II) complex has been investigated by thermo gravimetric (TG) analysis at heating rate of 10 °C min−1 under nitrogen atmosphere. The mechanism of decomposition of Cu(II) complex has been established from TG data. Kinetic parameters such as order of reaction (n), activation energy (E a), frequency factor (Z) and entropy of activation (∆S ) were calculated by using Freeman and Carroll (J Phys Chem 62:394–397, 1958) as well as Doyle’s methods as modified by Zsako (J Phys Chem 72(7):2406–2411, 1968).  相似文献   

10.
A series of trinuclear Cu(II) complexes have been prepared by Schiff base condensation of 1,8-[bis(3-formyl-2-hydroxy-5-methyl)benzyl]-l,4,8,11-tetraazacyclotetradecane and 1,8-[bis(3-formyl-2-hydroxy-5-bromo)benzyl]-l,4,8,11-tetraazacyclotetradecane with aromatic and aliphatic diamines, Cu(II) perchlorate and triethylamine. The complexes were characterized by elemental and spectroscopic analysis. Electrochemical studies of the complexes in DMF solution show three irreversible one-electron reduction processes around Epc 1 = −0.73 to −0.98 V, Epc 2 = −0.91 to −1.20 V and Epc 3 = −1.21 to −1.33 V. ESR spectra and magnetic moments of the trinuclear Cu(II) complexes show the presence of antiferromagnetic coupling. The rate constants for hydrolysis of 4-nitrophenylphosphate by the Cu(II) complexes are in the range of 3.33 × 10−2 to 7.58 × 10−2 min−1. The rate constants for the catecholase activity of the complexes fall in the range of 2.67 × 10−2 to 7.56 × 10−2 min−1. All the complexes were screened for antifungal and antibacterial activity.  相似文献   

11.
In this work, the potentiality of asymmetrical flow field-flow fractionation (A4F) hyphenated to UV detector and multi-angle light scattering (MALS) was investigated for accurately determining multi-walled carbon nanotube (MWCNT) length and its corresponding dispersion state in aqueous medium. Fractionation key parameters were studied to obtain a method robust enough for heterogeneous sample characterization. The main A4F conditions were 10−5 mL min−1 NH4NO3, elution flow of 1 mL min−1, and cross flow of 2 mL min−1. The recovery was found to be (94 ± 2)%. Online MALS analysis of eluted MWCNT suspension was performed to obtain length distribution. The length measurements were performed with a 4% relative standard deviation, and the length values were shown to be in accordance with expected ones. The capabilities of A4F-UV-MALS to size characterize various MWCNT samples and differentiate them according to their manufacturing process were evaluated by monitoring ball-milled MWCNT and MWCNT dispersions. The corresponding length distributions were found to be over 150–650 and 150–1,156 nm, respectively. A4F-UV-MALS was also used to evaluate MWCNT dispersion state in aqueous medium according to the surfactant concentration and sonication energy involved in the preparation of the dispersions. More especially, the presence or absence of aggregates, number and size of different populations, as well as size distributions were determined. A sodium dodecyl sulfate concentration of 15 to 30 mmol L−1 and a sonication energy ranged over 20–30 kJ allow obtaining an optimal MWCNT dispersion. It is especially valuable for studying nanomaterials and checking their manufacturing processes, size characterization being always of high importance.  相似文献   

12.
The purpose of this study was the development and validation of an LC–MS–MS method for simultaneous analysis of ibuprofen (IBP), 2-hydroxyibuprofen (2-OH-IBP) enantiomers, and carboxyibuprofen (COOH-IBP) stereoisomers in fungi culture medium, to investigate the ability of some endophytic fungi to biotransform the chiral drug IBP into its metabolites. Resolution of IBP and the stereoisomers of its main metabolites was achieved by use of a Chiralpak AS-H column (150 × 4.6 mm, 5 μm particle size), column temperature 8 °C, and the mobile phase hexane–isopropanol–trifluoroacetic acid (95: 5: 0.1, v/v) at a flow rate of 1.2 mL min−1. Post-column infusion with 10 mmol L−1 ammonium acetate in methanol at a flow rate of 0.3 mL min−1 was performed to enhance MS detection (positive electrospray ionization). Liquid–liquid extraction was used for sample preparation with hexane–ethyl acetate (1:1, v/v) as extraction solvent. Linearity was obtained in the range 0.1–20 μg mL−1 for IBP, 0.05–7.5 μg mL−1 for each 2-OH-IBP enantiomer, and 0.025–5.0 μg mL−1 for each COOH-IBP stereoisomer (r ≥ 0.99). The coefficients of variation and relative errors obtained in precision and accuracy studies (within-day and between-day) were below 15%. The stability studies showed that the samples were stable (p > 0.05) during freeze and thaw cycles, short-term exposure to room temperature, storage at −20 °C, and biotransformation conditions. Among the six fungi studied, only the strains Nigrospora sphaerica (SS67) and Chaetomium globosum (VR10) biotransformed IBP enantioselectively, with greater formation of the metabolite (+)-(S)-2-OH-IBP. Formation of the COOH-IBP stereoisomers, which involves hydroxylation at C3 and further oxidation to form the carboxyl group, was not observed.  相似文献   

13.
The decomposition mechanism of 5-Aza-2′-deoxycytidine has been studied by the use of computational techniques. Optimized structures for all of the stationary points in the gas phase were investigated at B3LYP/6-31+G(d,p) level of theory. Single-point energies were determined employing the ab initio MP2 method in conjunction with the 6-311++G(d,p) basis set. Five possible pathways, paths 1–5, were evaluated. In each pathway, the direct (A-paths 1–5) and water-assisted (B-paths 1–5) processes were considered. Meanwhile, the local microhydration model with the direct participation of three water molecules around the reaction centers was adopted to mimic the system for the water-assisted decomposition mechanisms above, where one water molecule is the nucleophilic reactant and the other two are the auxiliary molecules located on each side of the nucleophilic water. The results in the gas phase exhibit that the energy barriers of the water-assisted pathways based on the local microhydration model decrease dramatically by about 15–20 kcal/mol as compared with those of the direct pathways because of the contribution of the auxiliary water molecules. In addition, bulk solvent effects of water were determined by means of the self-consistent reaction field based on the conductor-like polarized continuum model and Monte Carlo simulation with free energy perturbation (MC-FEP) technique, respectively. Our computational results indicate that B-path 3 in the decomposition reaction of 5-azadC is the most favorable, where the calculated rate constant (1.68 × 10−3 min−1) using the MC-FEP method is within the range of the experimentally determined values [(5.89 ± 0.54) × 10−3 min−1 by UV and (1.46 ± 0.08) × 10−3 min−1 by NMR].  相似文献   

14.
The pyrazole ligand 3,5-dimethyl-4-iodopyrazole (HdmIPz) has been used to obtain a series of palladium(II) complexes (14) of the type [PdX2(HdmIPz)2] {X = Cl (1); Br (2); I (3); SCN (4)}. All compounds have been isolated, purified, and characterized by means of elemental analysis, IR spectroscopy, 1H and 13C{1H}-NMR experiments, differential thermal analysis (DTA), and thermogravimetry (TG). The TG/DTA curves showed that the compounds released ligands in the temperature range 137–605 °C, yielding metallic palladium as final residue. The complexes and the ligand together with cisplatin have been tested in vitro by MTT assay for their cytotoxicity against two murine cancer cell lines: mammary adenocarcinoma (LM3) and lung adenocarcinoma (LP07).  相似文献   

15.
An endo-β-1,4-mannanase encoding gene, man5, was cloned from Bispora antennata CBS 126.38, which was isolated from a beech stump. The cDNA of man5 consists of 1,299 base pairs and encodes a 432-amino-acid protein with a theoretical molecular mass of 46.6 kDa. Deduced MAN5 exhibited the highest amino acid sequence identity of 58% to a β-mannanase of glycoside hydrolase family 5 from Aspergillus aculeatus. Recombinant MAN5 was expressed in Pichia pastoris and purified to electrophoretic homogeneity. The specific activity of the final preparation towards locust bean gum was 289 U mg−1. MAN5 showed optimal activity at pH 6.0 and 70 °C and had good adaptation and stability over a broad range of pH values. The enzyme showed more than 60% of peak activity at pH 3.0–8.0 and retained more than 80% of activity after incubation at 37 °C for 1 h in both acid and alkaline conditions (pH 4.0–11.0). The K m and V max values were 1.33 mg ml−1 and 444 μmol min−1 mg−1 and 1.17 mg ml−1 and 196 μmol min−1 mg−1 for locust bean gum and konjac flour, respectively. Of all tested metal ions and chemical reagents, Co2+, Ni2+, and β-mercaptoethanol enhanced the enzyme activity at 1 mM, whereas other chemicals had no effect on or partially inhibited the enzyme activity. MAN5 was highly resistant to acidic and neutral proteases (trypsin, α-chymotrypsin, collagenase, subtilisin A, and proteinase K). By virtue of the favorable properties of MAN5, it is possible to apply this enzyme in the paper and food industries.  相似文献   

16.
A sensitive and simple analytical method has been developed for determination of Sb(III), Sb(V), Se(IV), Se(VI), Te(IV), Te(VI), and Bi(III) in garlic samples by using hydride-generation–atomic-fluorescence spectrometry (HG–AFS). The method is based on a single extraction of the inorganic species by sonication at room temperature with 1 mol L−1 H2SO4 and washing of the solid phase with 0.1% (w/v) EDTA, followed by measurement of the corresponding hydrides generated under two different experimental conditions directly and after a pre-reduction step. The limit of detection of the method was 0.7 ng g−1 for Sb(III), 1.0 ng g−1 for Sb(V), 1.3 ng g−1 for Se(IV), 1.0 ng g−1 for Se(VI), 1.1 ng g−1 for Te(IV), 0.5 ng g−1 for Te(VI), and 0.9 ng g−1 for Bi(III), in all cases expressed in terms of sample dry weight.  相似文献   

17.
Ar and Kr matrix effect on the geometry and Cl–H stretching (ν s (Cl–H)) and librational (ν l (Cl–H)) frequencies of the hydrogen-bonded complex Cl–H···NH3 are simulated within the framework of polarizable continuum model with integral equation formalism (IEF-PCM) at B3LYP and MP2 levels of theory with the basis set 6-311++G(2df,2pd). Within the framework of B3LYP and IEF-PCM, the simulated gas phase, Ar, and Kr matrix ν s (Cl–H) of the complex are 2140, 1684, and 1550 cm−1, respectively, which deviate from the experimental values (~2200, 1371, and 1218 cm−1) by −60, 313, and 332 cm−1. Within the framework of MP2 and IEF-PCM, the gas phase, Ar, and Kr matrix ν s (Cl–H) are calculated as 2366, 2037, and 1957 cm−1 by the harmonic approximation, and as 2177, 1876, and 1665 cm−1 by the full-dimensional anharmonic correction. The matrix effect modeling is of greater importance than the anharmonic correction in accounting for the large experimental gas phase to Ar or Kr matrix shift of the ν s (Cl–H) (−829 or −982 cm−1). Our calculations do not support the assignment of the 733.8 and 736.9 cm−1 bands to the Ar and Kr matrix ν l (Cl–H).  相似文献   

18.
Derivative of 8-hydroxyquinoline i.e. Clioquinol is well known for its antibiotic properties, drug design and coordinating ability towards metal ion such as Copper(II). The structure of mixed ligand complexes has been investigated using spectral, elemental and thermal analysis. In vitro anti microbial activity against four bacterial species were performed i.e. Escherichia coli, Pseudomonas aeruginosa, Serratia marcescens, Bacillus substilis and found that synthesized complexes (15–37 mm) were found to be significant potent compared to standard drugs (clioquinol i.e. 10–26 mm), parental ligands and metal salts employed for complexation. The kinetic parameters such as order of reaction (n = 0.96–1.49), and the energy of activation (E a = 3.065–142.9 kJ mol−1), have been calculated using Freeman–Carroll method. The range found for the pre-exponential factor (A), the activation entropy (S* = −91.03 to−102.6 JK−1 mol−1), the activation enthalpy (H* = 0.380–135.15 kJ mol−1), and the free energy (G* = 33.52–222.4 kJ mol−1) of activation reveals that the complexes are more stable. Order of stability of complexes were found to be [Cu(A4)(CQ)OH] · 4H2O > [Cu(A3)(CQ)OH] · 5H2O > [Cu(A1)(CQ)OH] · H2O > [Cu(A2)(CQ)OH] · 3H2O  相似文献   

19.
In this research, non-isothermal kinetics and feasibility study of medium grade crude oil is studied in the presence of a limestone matrix. Experiments were performed at a heating rate of 10°C min−1, whereas the air flow rate was kept constant at 50 mL min−1 in the temperature range of 20 to 600°C (DSC) and 20 to 900°C (TG). In combustion with air, three distinct reaction regions were identified in all crude oil/limestone mixtures, known as low temperature oxidation (LTO), fuel deposition (FD) and high temperature oxidation (HTO). The activation energy values were in the order of 5–9 kJ mol−1 in LTO region and 189–229 kJ mol−1 in HTO region. It was concluded that the medium grade crude oil field was not feasible for a self-sustained combustion process.  相似文献   

20.
Pyrroloquinoline quinone (PQQ), an essential nutrient, antioxidant, redox modulator and nerve growth factor found in a class of enzymes called quinoproteins, was labeled with 99mTc by using stannous fluoride (SnF2) method. Radiolabeling qualification, quality control and characterization of 99mTc-PQQ and its biodistribution studies in mice were performed and discussed. Effects of pH values, temperature, time and reducing agents concentration on the radiolabeling yield were investigated. The quality control procedure of 99mTc-PQQ was determined by thin layer chromatography (TLC), radio high-performance liquid chromatography (RHPLC) and paper electrophoresis methods. The average radiolabeling yield was 94 ± 1% under optimum conditions of 0.99 mg of PQQ, 30 μg of SnF2, 0.5 mg of ethylenediaminetetraacetic acid disodium salt (EDTA-2Na) and 18.5 MBq of Na99mTcO4 at pH 6 and 25 °C with a response volume of 1 ± 0.1 mL. 99mTc-PQQ was stable and anionic. Lipid–water partition coefficient of 99mTc-PQQ was −1.49 ± 0.16. The pharmacokinetics parameters of 99mTc-PQQ were t 1/2α = 18.16 min, t 1/2β = 100.45 min, K 12 = 0.013 min−1, K 21 = 0.017 min−1, K e = 0.016 min−1, AUC (area under the curve) = 1040.78 ID% g−1 min and CL (plasma clearance) = 0.096 mL min−1. The dual-exponential equation was Y = 10.88e−0.038t  + 5.21e−0.0069t . The biodistribution of 99mTc-PQQ was studied in ICR (Institute for Cancer Research 7701 Burhelme Are., Fox Chase, Philadelphia, PA 1911 USA) mice. In vitro autoradiographic studies clearly showed that the 99mTc-PQQ radioactivity accumulated predominantly in the hippocampus and cortex, which had a high density of N-methyl-d-aspartate Receptor (NMDAR). The enrichment can be blocked by NMDAR redox modulatory site antagonists-ebselen (EB) and 99mTc-PQQ is therefore a promising candidate for the molecular imaging of NMDAR. To date, however, there have been no studies characterizing 99mTc-PQQ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号