首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nontrivial Alexander polynomials of knots and links   总被引:1,自引:0,他引:1  
In this paper we present a sequence of link invariants, definedfrom twisted Alexander polynomials, and discuss their effectivenessin distinguishing knots. In particular, we recast and extendby geometric means a recent result of Silver and Williams onthe nontriviality of twisted Alexander polynomials for nontrivialknots. Furthermore we prove that these invariants decide ifa genus one knot is fibered. Finally we also show that theseinvariants distinguish all mutants with up to 12 crossings.  相似文献   

2.
Greg Friedman 《Topology》2004,43(1):71-117
By considering a (not necessarily locally-flat) PL knot as the singular locus of a PL stratified pseudomanifold, we can use intersection homology theory to define intersection Alexander polynomials, a generalization of the classical Alexander polynomial invariants for smooth or PL locally-flat knots. We show that the intersection Alexander polynomials satisfy certain duality and normalization conditions analogous to those of ordinary Alexander polynomials, and we explore the relationships between the intersection Alexander polynomials and certain generalizations of the classical Alexander polynomials that are defined for non-locally-flat knots. We also investigate the relations between the intersection Alexander polynomials of a knot and the intersection and classical Alexander polynomials of the link knots around the singular strata. To facilitate some of these investigations, we introduce spectral sequences for the computation of the intersection homology of certain stratified bundles.  相似文献   

3.
We present a twisted version of the Alexander polynomial associated with a matrix representation of the knot group. Examples of two knots with the same Alexander module but different twisted Alexander polynomials are given.  相似文献   

4.
Stefan Friedl 《Topology》2006,45(6):929-953
Every element in the first cohomology group of a 3-manifold is dual to embedded surfaces. The Thurston norm measures the minimal ‘complexity’ of such surfaces. For instance the Thurston norm of a knot complement determines the genus of the knot in the 3-sphere. We show that the degrees of twisted Alexander polynomials give lower bounds on the Thurston norm, generalizing work of McMullen and Turaev. Our bounds attain their most concise form when interpreted as the degrees of the Reidemeister torsion of a certain twisted chain complex. We show that these lower bounds give the correct genus bounds for all knots with 12 crossings or less, including the Conway knot and the Kinoshita-Terasaka knot which have trivial Alexander polynomial.We also give obstructions to fibering 3-manifolds using twisted Alexander polynomials and detect all knots with 12 crossings or less that are not fibered. For some of these it was unknown whether or not they are fibered. Our work in particular extends the fibering obstructions of Cha to the case of closed manifolds.  相似文献   

5.
Tristram and Levine introduced a continuous family of signature invariants for knots. We show that any possible value of such an invariant is realized by a knot with given Vassiliev invariants of bounded degree. We also show that one can make a knot prime preserving Alexander polynomial and Vassiliev invariants of bounded degree. Finally, the Tristram-Levine signatures are applied to obtain a condition on (signed) unknotting number.  相似文献   

6.
We start with a discussion on Alexander invariants, and then prove some general results concerning the divisibility of the Alexander polynomials and the supports of the Alexander modules, via Artin's vanishing theorem for perverse sheaves. We conclude with explicit computations of twisted cohomology following an idea already exploited in the hyperplane arrangement case, which combines the degeneration of the Hodge to de Rham spectral sequence with the purity of some cohomology groups.

  相似文献   


7.
Using elementary counting methods, we calculate a universal perturbative invariant (also known as the LMO invariant) of a 3-manifold M, satisfying , in terms of the Alexander polynomial of M. We show that +1 surgery on a knot in the 3-sphere induces an injective map from finite type invariants of integral homology 3-spheres to finite type invariants of knots. We also show that weight systems of degree 2m on knots, obtained by applying finite type 3m invariants of integral homology 3-spheres, lie in the algebra of Alexander-Conway weight systems, thus answering the questions raised in [Ga]. Received: 27 April 1998 / in final form: 8 August 1999  相似文献   

8.
《代数通讯》2013,41(7):2375-2385
ABSTRACT

In this paper, we consider the problem of constructing knot invariants from Yang–Baxter operators associated to algebra structures. We first compute the enhancements of these operators. Then, we conclude that Turaev's procedure to derive knot invariants from these enhanced operators, as modified by Murakami, invariably produces the Alexander polynomial of knots.  相似文献   

9.
In this paper, we describe the twisted Alexander polynomial of twist knots for nonabelian SL(2,C)-representations and investigate in detail the coefficient of the highest degree term as a function on the representation space of the knot group. In particular, we introduce the notion of monic representation and discuss its relation to the fiberedness of knots.  相似文献   

10.
We show that for a large class of contact three-manifolds the groups of Vassiliev invariants of Legendrian and of framed knots are canonically isomorphic. As a corollary, we obtain that the group of finite order Arnold's J+-type invariants of wave fronts on a surface F is isomorphic to the group of Vassiliev invariants of framed knots in the spherical cotangent bundle ST∗F of F.On the other hand, we construct the first examples of contact manifolds for which Vassiliev invariants of Legendrian knots can distinguish Legendrian knots that realize isotopic framed knots and are homotopic as Legendrian immersions.  相似文献   

11.
We consider a condition on a pair of the Alexander polynomials of knots which are realizable by a pair of knots with Gordian distance one. We show that there are infinitely many mutually disjoint infinite subsets in the set of the Alexander polynomials of knots such that every pair of distinct elements in each subset is not realizable by any pair of knots with Gordian distance one. As one of the subsets, we have an infinite set containing the Alexander polynomials of the trefoil knot and the figure eight knot. We also show that every pair of distinct Alexander polynomials such that one is the Alexander polynomial of a slice knot is realizable by a pair of knots of Gordian distance one, so that every pair of distinct elements in the infinite subset consisting of the Alexander polynomials of slice knots is realizable by a pair of knots with Gordian distance one. These results solve problems given by Y. Nakanishi and by I. Jong.  相似文献   

12.
Yi Ni 《Mathematische Annalen》2009,344(4):863-876
We study Dehn surgeries on null-homotopic knots that yield fibred 3-manifolds when an additional (but natural) homological restriction is imposed. The major tool used is Gabai’s theory of sutured manifold decomposition. Such surgeries are negative examples to a question of Michel Boileau. Another result we will prove is about surgeries which reduce the Thurston norm of a fibred manifold.  相似文献   

13.
We extend the theory of Vassiliev (or finite type) invariants for knots to knotoids using two different approaches. Firstly, we take closures on knotoids to obtain knots and we use the Vassiliev invariants for knots, proving that these are knotoid isotopy invariant. Secondly, we define finite type invariants directly on knotoids, by extending knotoid invariants to singular knotoid invariants via the Vassiliev skein relation. Then, for spherical knotoids we show that there are non-trivial type-1 invariants, in contrast with classical knot theory where type-1 invariants vanish. We give a complete theory of type-1 invariants for spherical knotoids, by classifying linear chord diagrams of order one, and we present examples arising from the affine index polynomial and the extended bracket polynomial.  相似文献   

14.
15.
We compute the vacuum expectation values of torus knot operators in Chern–Simons theory, and we obtain explicit formulae for all classical gauge groups and for arbitrary representations. We reproduce a known formula for the HOMFLY invariants of torus knots and links, and we obtain an analogous formula for Kauffman invariants. We also derive a formula for cable knots. We use our results to test a recently proposed conjecture that relates HOMFLY and Kauffman invariants.  相似文献   

16.
The study of the Vassiliev invariants of Legendrian knots was started by D. Fuchs and S. Tabachnikov who showed that the groups of C-valued Vassiliev invariants of Legendrian and of framed knots in the standard contact R3 are canonically isomorphic. Recently we constructed the first examples of contact 3-manifolds where Vassiliev invariants of Legendrian and of framed knots are different. Moreover in these examples Vassiliev invariants of Legendrian knots distinguish Legendrian knots that are isotopic as framed knots and homotopic as Legendrian immersions. This raised the question what information about Legendrian knots can be captured using Vassiliev invariants. Here we answer this question by showing that for any contact 3-manifold with a cooriented contact structure the groups of Vassiliev invariants of Legendrian knots and of knots that are nowhere tangent to a vector field that coorients the contact structure are canonically isomorphic.  相似文献   

17.
We give a combinatorial treatment of transverse homology, a new invariant of transverse knots that is an extension of knot contact homology. The theory comes in several flavors, including one that is an invariant of topological knots and produces a three-variable knot polynomial related to the A-polynomial. We provide a number of computations of transverse homology that demonstrate its effectiveness in distinguishing transverse knots, including knots that cannot be distinguished by the Heegaard Floer transverse invariants or other previous invariants.  相似文献   

18.
Kondo and Sakai independently gave a characterization of Alexander polynomials for knots which are transformed into the trivial knot by a single crossing change. The first author gave a characterization of Alexander polynomials for knots which are transformed into the trefoil knot (and into the figure-eight knot) by a single crossing change. In this note, we will give a characterization of Alexander polynomials for knots which are transformed into the 10132 knot (and into the (5,2)-torus knot) by a single crossing change. Moreover, this method can be applied for knots with monic Alexander polynomials.  相似文献   

19.
We generalize Turaev's definition of torsion invariants of pairs (M,&\xi;), where M is a 3-dimensional manifold and &\xi; is an Euler structure on M (a non-singular vector field up to homotopy relative to ∂M and modifications supported in a ball contained in Int(M)). Namely, we allow M to have arbitrary boundary and &\xi; to have simple (convex and/or concave) tangency circles to the boundary. We prove that Turaev's H 1(M)-equivariance formula holds also in our generalized context. Using branched standard spines to encode vector fields we show how to explicitly invert Turaev's reconstruction map from combinatorial to smooth Euler structures, thus making the computation of torsions a more effective one. Euler structures of the sort we consider naturally arise in the study of pseudo-Legendrian knots (i.e.~knots transversal to a given vector field), and hence of Legendrian knots in contact 3-manifolds. We show that torsion, as an absolute invariant, contains a lifting to pseudo-Legendrian knots of the classical Alexander invariant. We also precisely analyze the information carried by torsion as a relative invariant of pseudo-Legendrian knots which are framed-isotopic. Received: 3 October 2000 / Revised version: 20 April 2001  相似文献   

20.
Ozsváth and Szabó conjectured that knot Floer homology detects fibred knots in S 3. We will prove this conjecture for null-homologous knots in arbitrary closed 3-manifolds. Namely, if K is a knot in a closed 3-manifold Y, Y-K is irreducible, and is monic, then K is fibred. The proof relies on previous works due to Gabai, Ozsváth–Szabó, Ghiggini and the author. A corollary is that if a knot in S 3 admits a lens space surgery, then the knot is fibred. Dedicated to Professor Boju Jiang on the occasion of his 70th birthday Mathematics Subject Classification (2000) 57R58, 57M27, 57R30  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号