首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
图G的交叉数,记作cr(G),是把G画在平面上的所有画法中边与边产生交叉的最小数目,它是拓扑图论中的一个热点问题。Kle?c和Petrillová刻画了当G1为圈且cr(G1G2)-2时,因子图G1和G2满足的充要条件。在此基础上,本文研究当|V(G1)|≥3且cr(G1G2)=2时,G1和G2应满足的充要条件。  相似文献   

2.
三类笛卡尔积图的关联色数   总被引:2,自引:0,他引:2  
图的关联色数的概念是 Brualdi和 Massey于 1 993年引入的 ,它同图的强色指数有密切的关系 .Guiduli[2 ] 说明关联色数是有向星萌度的一个特殊情况 ,迄今仅确定了某些特殊图类的关联色数 .本文给出了完全图与完全图、圈与完全图、圈与圈的笛卡尔积图的关联色数。  相似文献   

3.
M.Kle??和J.Petrillová刻画了当G1为圈且cr (G1G2)=2时,因子图G1和G2所满足的充要条件.在此基础上,该文进一步刻画了在cr (G1G2)=2的前提下,当G1=P4,或者G1=P3且△(G2)=4时,因子图G2应满足的充要条件.  相似文献   

4.
苏振华  黄元秋 《数学研究》2011,44(4):411-417
确定图的交叉数是NP.完全问题.目前已确定交叉数的六阶图与星图的笛卡尔积图极少。本文确定了—个六阶图G与星图5k积图的交叉数为Z(6,n)+2n+[n/2].  相似文献   

5.
若干图类的邻强边染色   总被引:4,自引:0,他引:4  
研究了若干图类的邻强边染色 .利用在图中添加辅助点和边的方法 ,构造性的证明了对于完全图 Kn和路 Lm 的笛卡尔积图 Kn× Lm,有χ′as(Kn× Lm) =△ (Kn× Lm) +1 ,其中△ (Kn× Lm)和χ′as(Kn× Lm)分别表示图 Kn× Lm的最大度和邻强边色数 .同理验证了 n阶完全图 Kn的广义图 K(n,m)满足邻强边染色猜想 .  相似文献   

6.
利用矩阵初等变换的结果,给出矩阵的Kronecker积的Jordan标准形,进而得到矩阵的Kronecker积的最小多项式和可相似对角化的条件,最后归纳总结了矩阵的Kronecker积的范数和分解的结果.  相似文献   

7.
C(6,2)表示由圈C6增加边vivi 2(i=1,…,6,i 2(m od6))所得的图,把边vivi 2叫做C(6,2)的弦,B表示C(6,2)除去一条弦所得到的图,我们确定了B与Pn笛卡尔积的交叉数为5n-1.  相似文献   

8.
若干笛卡尔积图的邻点可区别E-全染色   总被引:4,自引:2,他引:2  
图G(V,E)的k是一个正整数,f是V(G)∪E(G)到{1,2,…,k}的一个映射,如果u,v∈V(G),则f(u)≠f(v),f(u)≠f(uv),f(v)≠f(uv),C(u)≠C(v),称f是图G的邻点可区别E-全染色,称最小的数k为图G的邻点可区别E-全色数.得到了Pm×Pn,Pm×Cn,Cm×Cn的邻点可区别E-全色数,其中C(u)={f(u)}∪{f(uv)uv∈E(G)}.  相似文献   

9.
广义正定矩阵的Hadamard积和Kronecker积的一些性质   总被引:11,自引:0,他引:11  
刘建洲  谢清明 《数学杂志》1992,12(2):155-161
本文讨论了各类型广义正定矩阵的 Hadamard 积和 Kronecker 积的一些重要性质,得到了判断 n 阶实矩阵是广义正定矩阵的一些充要条件,它们是[1]-[4]中相应定理的推广,最后,我们修正了[4]中的一个错误。  相似文献   

10.
设D是一个有向图,w={w_1,w_2,…,w_k}是D的一个有序点子集,v是D中任意一点。我们把有序k元素组r(v|w)=(d(v,w_1),d(v,w_2),…,d(v,w_k))称为点v对于W的(有向距离)表示。如果在D中,任意两个不同的点u和v对W的(有向距离)表示都不相同,则称W是有向图D的一个分解集。我们把D的最小分解集的基数称为有向图D的有向度量维数,并用dim(D)来表示。本文研究了有向笛卡尔积图D_1×D_2的有向度量维数。设P_m和C_m分别是长为m的有向路和有向圈。在文中我们分别给出了dim(D_1×D_2)的一个下界与dim(D×P_m)和dim(D×C_m)的上界,并通过确定dim(P_m×P_n),dim(C_m×P_n)和dim(C_m×C_n)的精确值说明了我们给出的上界是紧的。  相似文献   

11.
For a graph G, κ(G) denotes its connectivity. The Kronecker product G1×G2 of graphs G1 and G2 is the graph with the vertex set V(G1V(G2), two vertices (u1,v1) and (u2,v2) being adjacent in G1×G2 if and only if u1u2E(G1) and v1v2E(G2). Guji and Vumar [R. Guji, E. Vumar, A note on the connectivity of Kronecker products of graphs, Appl. Math. Lett. 22 (2009) 1360–1363] conjectured that for any nontrivial graph G, κ(G×Kn)=min{nκ(G),(n−1)δ(G)} when n≥3. In this note, we confirm this conjecture to be true.  相似文献   

12.
This article proves the following result: Let G and G′ be graphs of orders n and n′, respectively. Let G* be obtained from G by adding to each vertex a set of n′ degree 1 neighbors. If G* has game coloring number m and G′ has acyclic chromatic number k, then the Cartesian product GG′ has game chromatic number at most k(k + m ? 1). As a consequence, the Cartesian product of two forests has game chromatic number at most 10, and the Cartesian product of two planar graphs has game chromatic number at most 105. © 2008 Wiley Periodicals, Inc. J Graph Theory 59: 261–278, 2008  相似文献   

13.
Pebbling numbers of some graphs   总被引:1,自引:0,他引:1  
Chung defined a pebbling move on a graphG as the removal of two pebbles from one vertex and the addition of one pebble to an adjacent vertex. The pebbling number of a connected graphG, f(G), is the leastn such that any distribution ofn pebbles onG allows one pebble to be moved to any specified but arbitrary vertex by a sequence of pebbling moves. Graham conjectured that for any connected graphsG andH, f(G xH) ≤ f(G)f(H). In the present paper the pebbling numbers of the product of two fan graphs and the product of two wheel graphs are computed. As a corollary, Graham’s conjecture holds whenG andH are fan graphs or wheel graphs.  相似文献   

14.
Let f be a function assigning list sizes to the vertices of a graph G. The sum choice number of G is the minimum ∑vV(G)f(v) such that for every assignment of lists to the vertices of G, with list sizes given by f, there exists proper coloring of G from the lists. We answer a few questions raised in a paper of Berliner, Bostelmann, Brualdi, and Deaett. Namely, we determine the sum choice number of the Petersen graph, the cartesian product of paths , and the complete bipartite graph K3,n.  相似文献   

15.
Let G be a graph with vertex set V(G) and edge set E(G). A function f:E(G)→{-1,1} is said to be a signed star dominating function of G if for every vV(G), where EG(v)={uvE(G)|uV(G)}. The minimum of the values of , taken over all signed star dominating functions f on G, is called the signed star domination number of G and is denoted by γSS(G). In this paper, a sharp upper bound of γSS(G×H) is presented.  相似文献   

16.
Use vi,κi,λi,δi to denote order, connectivity, edge-connectivity and minimum degree of a graph Gi for i=1,2, respectively. For the connectivity and the edge-connectivity of the Cartesian product graph, up to now, the best results are κ(G1×G2)?κ1+κ2 and λ(G1×G2)?λ1+λ2. This paper improves these results by proving that κ(G1×G2)?min{κ1+δ2,κ2+δ1} and λ(G1×G2)=min{δ1+δ2,λ1v2,λ2v1} if G1 and G2 are connected undirected graphs; κ(G1×G2)?min{κ1+δ2,κ2+δ1,2κ1+κ2,2κ2+κ1} if G1 and G2 are strongly connected digraphs. These results are also generalized to the Cartesian products of connected graphs and n strongly connected digraphs, respectively.  相似文献   

17.
The tensor product (G1,G2,G3) of graphs G1, G2 and G3 is defined by V(G1,G2,G3)=V(G1)×V(G2)×V(G3)and E(G1,G2,G3)=((u1,u2,u3),(v1,v2,v3)):|{i:(ui,vi)E(Gi)}|2.Let χf(G) be the fractional chromatic number of a graph G. In this paper, we prove that if one of the three graphs G1, G2 and G3 is a circular clique, χf(G1,G2,G3)=min{χf(G1)χf(G2),χf(G1)χf(G3),χf(G2)χf(G3)}.  相似文献   

18.
On optimizing edge connectivity of product graphs   总被引:1,自引:0,他引:1  
This work studies the super edge connectivity and super restricted edge connectivity of direct product graphs, Cartesian product graphs, strong product graphs and lexicographic product graphs. As a result, sufficient conditions for optimizing the edge connectivity and restricted edge connectivity of these graphs are presented.  相似文献   

19.
A well-established generalization of graph coloring is the concept of list coloring. In this setting, each vertex v of a graph G is assigned a list L(v) of k colors and the goal is to find a proper coloring c of G with c(v)∈L(v). The smallest integer k for which such a coloring c exists for every choice of lists is called the list chromatic number of G and denoted by χl(G).We study list colorings of Cartesian products of graphs. We show that unlike in the case of ordinary colorings, the list chromatic number of the product of two graphs G and H is not bounded by the maximum of χl(G) and χl(H). On the other hand, we prove that χl(G×H)?min{χl(G)+col(H),col(G)+χl(H)}-1 and construct examples of graphs G and H for which our bound is tight.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号