首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 370 毫秒
1.
Treatment of the ebnpa (N-2-(ethylthio)ethyl-N,N-bis((6-neopentylamino-2-pyridyl)methyl)amine) ligand with a molar equivalent amount of Cd(ClO(4))(2).5H(2)O in CH(3)CN followed by the addition of [Me(4)N]OH.5H(2)O yielded the cadmium hydroxide complex [(ebnpaCd)(2)(mu-OH)(2)](ClO(4))(2) (1). Complex 1 has a binuclear cation in the solid-state with secondary hydrogen-bonding and CH/pi interactions involving the ebnpa ligand. In acetonitrile, 1 forms a binuclear/mononuclear equilibrium mixture. The formation of a mononuclear species has been confirmed by conductance measurements of 1 at low concentrations. Variable temperature studies of the binuclear/mononuclear equilibrium provided the standard enthalpy and entropy associated with the formation of the monomer as DeltaH degrees = +31(2) kJ mol(-1) and DeltaS degrees = +108(8) J mol(-1) K(-1), respectively. Enhanced secondary hydrogen-bonding interactions involving the terminal Cd-OH moiety may help to stabilize the mononuclear complex. Treatment of 1 with CO(2) in acetonitrile results in the formation of a binuclear cadmium carbonate complex, [(ebnpaCd)(2)(mu-CO(3))](ClO(4))(2) (2).  相似文献   

2.
A series of iron(III) complexes of the tetradentate ligand BPMEN (N,N'-dimethyl-N,N'-bis(2-pyridylmethyl)ethane-1,2-diamine) were prepared and structurally characterized. Complex [Fe(2)(mu-O)(mu-OH)(BPMEN)(2)](ClO(4))(3) (1) contains a (mu-oxo)(mu-hydroxo)diiron(III) diamond core. Complex [Fe(BPMEN)(urea)(OEt)](ClO(4))(2) (2) is a rare example of a mononuclear non-heme iron(III) alkoxide complex. Complexes [Fe(2)(mu-O)(mu-OC(NH(2))NH)(BPMEN)(2)](ClO(4))(3) (3) and [Fe(2)(mu-O)(mu-OC(NHMe)NH)(BPMEN)(2)](ClO(4))(3) (4) feature N,O-bridging deprotonated urea ligands. The kinetics and equilibrium of the reactions of 1 with ligands L (L = water, urea, 1-methylurea, 1,1-dimethylurea, 1,3-dimethylurea, 1,1,3,3-tetramethylurea, and acetamide) in acetonitrile solutions were studied by stopped-flow UV-vis spectrophotometry, NMR, and mass spectrometry. All these ligands react with 1 in a rapid equilibrium, opening the four-membered Fe(III)(mu-O)(mu-OH)Fe(III) core and forming intermediates with a (HO)Fe(III)(mu-O)Fe(III)(L) core. The entropy and enthalpy for urea binding through oxygen are DeltaH degrees = -25 kJ mol(-1) and DeltaS degrees = -53.4 J mol(-1) K(-1) with an equilibrium constant of K(1) = 37 L mol(-1) at 25 degrees C. Addition of methyl groups on one of the urea nitrogen did not affect this reaction, but the addition of methyl groups on both nitrogens considerably decreased the value of K(1). An opening of the hydroxo bridge in the diamond core complex [Fe(2)(mu-O)(mu-OH)(BPMEN)(2)] is a rapid associative process, with activation enthalpy of about 60 kJ mol(-1) and activation entropies ranging from -25 to -43 J mol(-1) K(-1). For the incoming ligands with the -CONH(2) functionality (urea, 1-methylurea, 1,1-dimethylurea, and acetamide), a second, slow step occurs, leading to the formation of stable N,O-coordinated amidate diiron(III) species such as 3 and 4. The rate of this ring-closure reaction is controlled by the steric bulk of the incoming ligand and by the acidity of the amide group.  相似文献   

3.
The spin crossover system, [Fe(bzimpy)(2)](ClO(4))(2).0.25H(2)O, was reinvestigated above room temperature (bzimpy = 2,6-bis(benzimidazol-2-yl)pyridine). The system exhibits an abrupt low-spin to high-spin transition at T(c) = 403 K. Liberation of a fractional amount of water does not affect the spin crossover: the system is perfectly reversible with a hysteresis width of DeltaT = 12 K. The existence of the hysteresis at such high temperature determines that the lowest limit of the solid-state cooperativity parameter is J/k > 403 K despite long iron(II) separations (10 A). The high cooperativeness has been assigned to a perfect pi-stacking of the benzimidazole rings in the crystal lattice at a distance as short as 3.6 A. Variable-temperature IR data and the heat capacity measurements match well the magnetic data. The thermodynamic properties are DeltaH = 17 kJ mol(-)(1), DeltaS = 43 J K(-)(1) mol(-)(1), so that the entropy of the spin transition shows a considerable contribution from the molecular vibrations. A theoretical model has been applied in fitting the magnetic data along the whole hysteresis path. A statistical distribution of the cooperativity parameter led to the feature that angled walls of the hysteresis loop are well reproduced.  相似文献   

4.
Five mononuclear spin crossover iron(II) bis-meridional ligand complexes of the general formula [Fe(L)(2)](X)(2).solvent, have been synthesized, where X = BF(4)- or ClO(4)-; L = 2-(1-pyridin-2-ylmethyl-1H-pyrazol-3-yl)-pyrazine (picpzpz) or 2-(3-(2-pyridyl)pyrazol-1-ylmethyl)pyridine) (picpypz); solvent = MeOH or EtOH. The magnetic and structural consequences of systematic variation of meridional ligand, solvent, and anion, including a desolvated species, have been investigated. The complex [Fe(picpzpz)(2)](BF(4))(2).MeOH, 1.MeOH, displays several unique properties including a two-step spin transition with a gradual higher-temperature step ((1)T(1/2) = 197 K) and an abrupt low-temperature step with hysteresis ((2)T(1/2) = 91/98 K) and a metastable intermediate spin state below 70 K with quench-cooling. Removal of the solvent methanol results in the loss of the abrupt step and associated hysteresis (T(1/2) = 150 K). The complexes [Fe(picpzpz)(2)](BF(4))(2).EtOH (1.EtOH), [Fe(picpzpz)(2)](ClO(4))(2).MeOH (2.MeOH), [Fe(picpzpz)(2)](ClO(4))(2).EtOH (2.EtOH), and [Fe(picpypz)(2)](BF(4))(2).MeOH (3.MeOH) all show gradual one-step spin transitions with T(1/2) values in the range 210-250 K. Photomagnetic LIESST measurements on 1.MeOH reveal a near-quantitative excitation of high-spin sites and a unique two-step relaxation process related to the two-step thermal spin transition ((1)T(LIESST) = 49 K and (2)T(LIESST) = 70 K). The structural consequences of the unusual spin transition displayed by 1.MeOH have been investigated by single-crystal X-ray diffraction structural analyses between 25 and 293 K. Detailed characterization of the unit cell parameter evolution vs temperature reflects both the gradual high-temperature step and abrupt low-temperature step, including the thermal hysteresis, observed magnetically.  相似文献   

5.
Paramagnetic effects on the relaxation rate and shift difference of the (17)O nucleus of bulk water enable the study of water exchange mechanisms on transition metal complexes by variable temperature and variable pressure NMR. The water exchange kinetics of [Mn(II)(edta)(H2O)](2-) (CN 7, hexacoordinated edta) was reinvestigated and complemented by variable pressure NMR data. The results revealed a rapid water exchange reaction for the [Mn(II)(edta)(H2O)](2-) complex with a rate constant of k(ex) = (4.1 +/- 0.4) x 10(8) s(-1) at 298.2 K and ambient pressure. The activation parameters DeltaH(double dagger), DeltaS(double dagger), and DeltaV(double dagger) are 36.6 +/- 0.8 kJ mol(-1), +43 +/- 3 J K(-1) mol(-1), and +3.4 +/- 0.2 cm(3) mol(-1), which are in line with a dissociatively activated interchange (I(d)) mechanism. To analyze the structural influence of the chelate, the investigation was complemented by studies on complexes of the edta-related tmdta (trimethylenediaminetetraacetate) chelate. The kinetic parameters for [Fe(II)(tmdta)(H2O)](2-) are k(ex) = (5.5 +/- 0.5) x 10(6) s(-1) at 298.2 K, DeltaH(double dagger) = 43 +/- 3 kJ mol(-1), DeltaS(double dagger) = +30 +/- 13 J K(-1) mol(-1), and DeltaV(double dagger) = +15.7 +/- 1.5 cm(3) mol(-1), and those for [Mn(II)(tmdta)(H2O)](2-) are k(ex) = (1.3 +/- 0.1) x 10(8) s(-1) at 298.2 K, DeltaH(double dagger) = 37.2 +/- 0.8 kJ mol(-1), DeltaS(double dagger) = +35 +/- 3 J K(-1) mol(-1), and DeltaV(double dagger) = +8.7 +/- 0.6 cm(3) mol(-1). The water containing species, [Fe(III)(tmdta)(H2O)](-) with a fraction of 0.2, is in equilibrium with the water-free hexa-coordinate form, [Fe(III)(tmdta)](-). The kinetic parameters for [Fe(III)(tmdta)(H2O)](-) are k(ex) = (1.9 +/- 0.8) x 10(7) s(-1) at 298.2 K, DeltaH(double dagger) = 42 +/- 3 kJ mol(-1), DeltaS(double dagger) = +36 +/- 10 J K(-1) mol(-1), and DeltaV(double dagger) = +7.2 +/- 2.7 cm(3) mol(-1). The data for the mentioned tmdta complexes indicate a dissociatively activated exchange mechanism in all cases with a clear relationship between the sterical hindrance that arises from the ligand architecture and mechanistic details of the exchange process for seven-coordinate complexes. The unexpected kinetic and mechanistic behavior of [Ni(II)(edta')(H2O)](2-) and [Ni(II)(tmdta')(H2O)](2-) is accounted for in terms of the different coordination number due to the strong preference for an octahedral coordination environment and thus a coordination equilibrium between the water-free, hexadentate [M(L)](n+) and the aqua-pentadentate forms [M(L')(H2O)](n+) of the Ni(II)-edta complex, which was studied in detail by variable temperature and pressure UV-vis experiments. For [Ni(II)(edta')(H2O)](2-) (CN 6, pentacoordinated edta) a water substitution rate constant of (2.6 +/- 0.2) x 10(5) s(-1) at 298.2 K and ambient pressure was measured, and the activation parameters DeltaH(double dagger), DeltaS(double dagger), and DeltaV(double dagger) were found to be 34 +/- 1 kJ mol(-1), -27 +/- 2 J K(-1) mol(-1), and +1.8 +/- 0.1 cm(3) mol(-1), respectively. For [Ni(II)(tmdta')(H2O)](2-), we found k = (6.4 +/- 1.4) x 10(5) s(-1) at 298.2 K, DeltaH(double dagger) = 22 +/- 4 kJ mol(-1), and DeltaS(double dagger) = -59 +/- 5 J K(-1) mol(-1). The process is referred to as a water substitution instead of a water exchange reaction, since these observations refer to the intramolecular displacement of coordinated water by the carboxylate moiety in a ring-closure reaction.  相似文献   

6.
The reduction of ClO(2) to ClO(2)(-) by aqueous iron(II) in 0.5 M HClO(4) proceeds by both outer-sphere (86%) and inner-sphere (14%) electron-transfer pathways. The second-order rate constant for the outer-sphere reaction is 1.3 x 10(6) M(-1) s(-1). The inner-sphere electron-transfer reaction takes place via the formation of FeClO(2)(2+) that is observed as an intermediate. The rate constant for the inner-sphere path (2.0 x 10(5) M(-1) s(-1)) is controlled by ClO(2) substitution of a coordinated water to give an inner-sphere complex between ClO(2) and Fe(II) that very rapidly transfers an electron to give (Fe(III)(ClO(2)(-))(H(2)O)(5)(2+))(IS). The composite activation parameters for the ClO(2)/Fe(aq)(2+) reaction (inner-sphere + outer-sphere) are the following: DeltaH(r)++ = 40 kJ mol(-1); DeltaS(r)++ = 1.7 J mol(-1) K(-1). The Fe(III)ClO(2)(2+) inner-sphere complex dissociates to give Fe(aq)(3+) and ClO(2)(-) (39.3 s(-1)). The activation parameters for the dissociation of this complex are the following: DeltaH(d)++= 76 kJ mol(-1); DeltaS(d)++= 32 J K(-1) mol(-1). The reaction of Fe(aq)(2+) with ClO(2)(-) is first order in each species with a second-order rate constant of k(ClO2)- = 2.0 x 10(3) M(-1) s(-1) that is five times larger than the rate constant for the Fe(aq)(2+) reaction with HClO(2) in H(2)SO(4) medium ([H(+)] = 0.01-0.13 M). The composite activation parameters for the Fe(aq)(2+)/Cl(III) reaction in H(2)SO(4) are DeltaH(Cl(III))++ = 41 kJ mol(-1) and DeltaS(Cl(III))++ = 48 J mol(-1) K(-1).  相似文献   

7.
Oshio H  Yamamoto M  Ito T 《Inorganic chemistry》2002,41(22):5817-5820
Cyanide-bridged molecular squares of [Fe(II)(2)Cu(II)(2)(mu-CN)(4)(dmbpy)(4)(impy)(2)](ClO(4))(4).4CH(3)OH.C(6)H(6) (1) and of [Fe(III)(2)Cu(II)(2)(mu-CN)(4)(dmbpy)(4)(impy)(2)](ClO(4))(6).4CH(3)OH.4H(2)O (2) (dmbpy = 4,4'-dimethyl-2,2'-bipyridine; impy = 2-(2-pyridyl)-4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazolyl-1-oxy) were prepared. In the squares of 1 and 2, the Fe(II/III) (low spin) and Cu(II) ions are alternately bridged by the cyanide groups, in which the cyanide carbon atoms coordinated to the Fe(II) ions and Cu(II) ions are coordinated by imino nitroxide. Magnetic susceptibility measurements for 1 and 2 revealed that the Cu(II) ion and imino nitroxide are ferromagnetically coupled with a fairly strong coupling constant (J(Cu-radical) > 300 K) and act as triplet species. In 1 the Cu(II)-radical moieties are magnetically separated by the Fe(II) ions. In the square of 2, dpi (Fe(III)), dsigma (Cu(II)), and ppi (imino nitroxide) spins are alternately assembled, and this situation allowed the square to have an S = 3 spin ground state. The exchange coupling constant of Fe(III) and the Cu(II)-radical moiety in 2 was estimated to be J = 4.9 cm(-1) (H = -2JSigmaS(Fe).S(Cu-radical)).  相似文献   

8.
In order to expand the few known examples of dinuclear iron(II) compounds displaying (weak) intradinuclear exchange coupling and spin-crossover on one or both of the iron(II) centres, various dinuclear compounds have been synthesised and assessed for their spin-crossover and exchange coupling behaviour. The key aim of the work was to prepare and structurally characterise 'weakly linked' and 'covalently bridged' systems incorporating bridging ligands such as alkyldinitriles (e.g.NC(CH(2))(4)CN), bipyrimidine (bpym), dicyanamide (dca(-)), tricyanomethanide (tcm(-)), 3,6-bis(2-pyridyl)tetrazine (bptz) and 3,6-bis(2-pyridyl)2,5-dihydrotetrazine (H(2)bptz). The 'end groups', which complete the Fe(ii)N(6) chromophores, include tris(2-pyridylmethyl)amine (tpa), di(2-pyridylethyl)(2-pyridylmethyl)amine (tpa'), 3-(2-pyridyl)pyrazole (pypzH), 1,10-phenanthroline (1,10-phen), tris(pyrazolyl)methane (tpm) and NCX(-)(X = S, Se). It was quite difficult to achieve the spin-crossover condition, many ligand combinations yielding high-spin/high-spin (HS-HS) Fe(II)Fe(II) spin states at all temperatures (300-2 K) with very weak antiferromagnetic coupling (J < -1 cm(-1)), two such being the crystallographically characterised [(dca)(tpm)Fe(mu(1,5)-dca)(2)Fe(tpm)(dca)], 5, and [(tpa')Fe(mu(1,5)-tcm)(2)Fe(tpa')](tcm)(2)(H(2)O)(2), 6. In contrast, a strong field was created around the Fe(II) centres in [(tpa)Fe(mu-(NC(CH(2))(4)CN))(2)Fe(tpa)](ClO(4))(4).NC(CH(2))(4)CN, 1, and the Fe-N bond distances, at 173 K, reflected this. This weakly-linked dinitrile example showed a spin-crossover beginning above 300 K. 'Half crossover' examples, yielding HS-LS states below the spin transition, similar to those noted by Real and coworkers in some mu-bpym systems, were noted for [(1,10-phen)(NCS)(2)Fe(mu-bpym)Fe(NCS)(2)(1,10-phen)], 2, [(pypzH)(NCSe)(2)Fe(mu-bpym)Fe(NCSe)(2)(pypzH)], 4, and [(tpa)Fe(mu-H(2)bptz)Fe(tpa)](ClO(4))(4), 8. Interestingly, the mu-bptz analogue, 7, remained LS-LS at all temperatures with the start of a broad spin crossover evident above 300 K. No thermal hysteresis was evident in the spin transitions of these new dinuclear crossover species indicating a lack of intra- or interdinuclear cooperativity.  相似文献   

9.
The iron(III) complexes [Fe(2)(HPTB)(mu-OH)(NO(3))(2)](NO(3))(2).CH(3)OH.2H(2)O (1), [Fe(2)(HPTB)(mu-OCH(3))(NO(3))(2)](NO(3))(2).4.5CH(3)OH (2), [Fe(2)(HPTB)(mu-OH)(OBz)(2)](ClO(4))(2).4.5H(2)O (3), [Fe(2)(N-EtOH-HPTB)(mu-OH)(NO(3))(2)](ClO(4))(NO(3)).3CH(3)OH.1.5H(2)O (4), [Fe(2)(5,6-Me(2)-HPTB)(mu-OH)(NO(3))(2)](ClO(4))(NO(3)).3.5CH(3)OH.C(2)H(5)OC(2)H(5).0.5H(2)O (5), and [Fe(4)(HPTB)(2)(mu-F)(2)(OH)(4)](ClO(4))(4).CH(3)CN.C(2)H(5)OC(2)H(5).H(2)O (6) were synthesized (HPTB = N,N,N',N'-tetrakis(2-benzimidazolylmethyl)-2-hydroxo-1,3-diaminopropane, N-EtOH-HPTB = N,N,N',N'-tetrakis(N' '-(2-hydroxoethyl)-2-benzimidazolylmethyl)-2-hydroxo-1,3-diaminopropane, 5,6-Me(2)-HPTB = N,N,N',N'-tetrakis(5,6-dimethyl-2-benzimidazolylmethyl)-2-hydroxo-1,3-diaminopropane). The molecular structures of 2-6 were established by single-crystal X-ray crystallography. Iron(II) complexes with ligands similar to the dinucleating ligands described herein have been used previously as model compounds for the dioxygen uptake at the active sites of non-heme iron enzymes. The same metastable (mu-peroxo)diiron(III) adducts were observed during these studies. They can be prepared by adding hydrogen peroxide to the iron(III) compounds 1-6. Using stopped-flow techniques these reactions were kinetically investigated in different solvents and a mechanism was postulated.  相似文献   

10.
Kinetic studies of cyanide exchange on [M(CN)(4)](2-) square-planar complexes (M = Pt, Pd, and Ni) were performed as a function of pH by (13)C NMR. The [Pt(CN)(4)](2-) complex has a purely second-order rate law, with CN(-) as acting as the nucleophile, with the following kinetic parameters: (k(2)(Pt,CN))(298) = 11 +/- 1 s(-1) mol(-1) kg, DeltaH(2) (Pt,CN) = 25.1 +/- 1 kJ mol(-1), DeltaS(2) (Pt,CN) = -142 +/- 4 J mol(-1) K(-1), and DeltaV(2) (Pt,CN) = -27 +/- 2 cm(3) mol(-1). The Pd(II) metal center has the same behavior down to pH 6. The kinetic parameters are as follows: (k(2)(Pd,CN))(298) = 82 +/- 2 s(-1) mol(-1) kg, DeltaH(2) (Pd,CN) = 23.5 +/- 1 kJ mol(-1), DeltaS(2) (Pd,CN) = -129 +/- 5 J mol(-1) K(-1), and DeltaV(2) (Pd,CN) = -22 +/- 2 cm(3) mol(-1). At low pH, the tetracyanopalladate is protonated (pK(a)(Pd(4,H)) = 3.0 +/- 0.3) to form [Pd(CN)(3)HCN](-). The rate law of the cyanide exchange on the protonated complex is also purely second order, with (k(2)(PdH,CN))(298) = (4.5 +/- 1.3) x 10(3) s(-1) mol(-1) kg. [Ni(CN)(4)](2-) is involved in various equilibrium reactions, such as the formation of [Ni(CN)(5)](3-), [Ni(CN)(3)HCN](-), and [Ni(CN)(2)(HCN)(2)] complexes. Our (13)C NMR measurements have allowed us to determine that the rate constant leading to the formation of [Ni(CN)(5)](3-) is k(2)(Ni(4),CN) = (2.3 +/- 0.1) x 10(6) s(-1) mol(-1) kg when the following activation parameters are used: DeltaH(2)() (Ni,CN) = 21.6 +/- 1 kJ mol(-1), DeltaS(2) (Ni,CN) = -51 +/- 7 J mol(-1) K(-1), and DeltaV(2) (Ni,CN) = -19 +/- 2 cm(3) mol(-1). The rate constant of the back reaction is k(-2)(Ni(4),CN) = 14 x 10(6) s(-1). The rate law pertaining to [Ni(CN)(2)(HCN)(2)] was found to be second order at pH 3.8, and the value of the rate constant is (k(2)(Ni(4,2H),CN))(298) = (63 +/- 15) x10(6) s(-1) mol(-1) kg when DeltaH(2) (Ni(4,2H),CN) = 47.3 +/- 1 kJ mol(-1), DeltaS(2) (Ni(4,2H),CN) = 63 +/- 3 J mol(-1) K(-1), and DeltaV(2) (Ni(4,2H),CN) = - 6 +/- 1 cm(3) mol(-1). The cyanide-exchange rate constant on [M(CN)(4)](2-) for Pt, Pd, and Ni increases in a 1:7:200 000 ratio. This trend is modified at low pH, and the palladium becomes 400 times more reactive than the platinum because of the formation of [Pd(CN)(3)HCN](-). For all cyanide exchanges on tetracyano complexes (A mechanism) and on their protonated forms (I/I(a) mechanisms), we have always observed a pure second-order rate law: first order for the complex and first order for CN(-). The nucleophilic attack by HCN or solvation by H(2)O is at least nine or six orders of magnitude slower, respectively than is nucleophilic attack by CN(-) for Pt(II), Pd(II), and Ni(II), respectively.  相似文献   

11.
The treatment of Fe(ClO(4))(2)·6H(2)O or Fe(ClO(4))(3)·9H(2)O with a benzimidazolyl-rich ligand, N,N,N',N'-tetrakis[(1-methyl-2-benzimidazolyl)methyl]-1,2-ethanediamine (medtb) in alcohol/MeCN gives a mononuclear ferrous complex, [Fe(II)(medtb)](ClO(4))(2)·?CH(3)CN·?CH(3)OH (1), and four non-heme alkoxide-iron(III) complexes, [Fe(III)(OMe)(medtb)](ClO(4))(2)·H(2)O (2, alcohol = MeOH), [Fe(III)(OEt)(Hmedtb)](ClO(4))(3)·CH(3)CN (3, alcohol = EtOH), [Fe(III)(O(n)Pr)(Hmedtb)](ClO(4))(3)·(n)PrOH·2CH(3)CN (4, alcohol = n-PrOH), and [Fe(III)(O(n)Bu)(Hmedtb)](ClO(4))(3)·3CH(3)CN·H(2)O (5, alcohol = n-BuOH), respectively. The alkoxide-iron(III) complexes all show 1) a Fe(III)-OR center (R = Me, 2; Et, 3; (n)Pr, 4; (n)Bu, 5) with the Fe-O bond distances in the range of 1.781-1.816 ?, and 2) a yellow color and an intense electronic transition around 370 nm. The alkoxide-iron(III) complexes can be reduced by organic compounds with a cis,cis-1,4-diene moiety via the hydrogen atom abstraction reaction.  相似文献   

12.
()()Conventional (18)O isotopic labeling techniques have been used to measure the water exchange rates on the Rh(III) hydrolytic dimer [(H(2)O)(4)Rh(&mgr;-OH)(2)Rh(H(2)O)(4)](4+) at I = 1.0 M for 0.08 < [H(+)] < 0.8 M and temperatures between 308.1 and 323.1 K. Two distinct pathways of water exchange into the bulk solvent were observed (k(fast) and k(slow)) which are proposed to correspond to exchange of coordinated water at positions cis and trans to bridging hydroxide groups. This proposal is supported by (17)O NMR measurements which clearly showed that the two types of water ligands exchange at different rates and that the rates of exchange matched those from the (18)O labeling data. No evidence was found for the exchange of label in the bridging OH groups in either experiment. This contrasts with findings for the Cr(III) dimer. The dependence of both k(fast) and k(slow) on [H(+)] satisfied the expression k(obs) = (k(O)[H(+)](tot) +k(OH)K(a1))/([H(+)](tot) + K(a1)) which allows for the involvement of fully protonated and monodeprotonated Rh(III) dimer. The following rates and activation parameters were determined at 298 K. (i) For fully protonated dimer: k(fast) = 1.26 x 10(-)(6) s(-)(1) (DeltaH() = 119 +/- 4 kJ mol(-)(1) and DeltaS() = 41 +/- 12 J K(-)(1) mol(-)(1)) and k(slow) = 4.86 x 10(-)(7) s(-)(1) (DeltaH() = 64 +/- 9 kJ mol(-)(1) and DeltaS() = -150 +/- 30 J K(-)(1) mol(-)(1)). (ii) For monodeprotonated dimer: k(fast) = 3.44 x 10(-)(6) s(-)(1) (DeltaH() = 146 +/- 4 kJ mol(-)(1) and DeltaS() = 140 +/- 11 J K(-)(1) mol(-)(1)) and k(slow) = 2.68 x 10(-)(6) s(-)(1) (DeltaH() = 102 +/- 3 kJ mol(-)(1) and DeltaS() = -9 +/- 11 J K(-)(1) mol(-)(1)). Deprotonation of the Rh(III) dimer was found to labilize the primary coordination sphere of the metal ions and thus increase the rate of water exchange at positions cis and trans to bridging hydroxides but not to the same extent as for the Cr(III) dimer. Activation parameters and mechanisms for ligand substitution processes on the Rh(III) dimer are discussed and compared to those for other trivalent metal ions and in particular the Cr(III) dimer.  相似文献   

13.
The catechol dioxygenase reactivity of iron(III) complexes using tripodal ligands was investigated. Increasing, as well as decreasing, chelate ring sizes in the highly active complex [Fe(tmpa)(dbc)]B(C6H5)4 (tmpa = tris[(2-pyridyl)methyl]amine; dbc = 3,5-di-tert-butylcatecholate dianion), using related ligands, only resulted in decreased reactivity of the investigated compounds. A detailed low-temperature stopped-flow investigation of the reaction of dioxygen with [Fe(tmpa)(dbc)]B(C6H5)4 was performed, and activation parameters of DeltaH++ = 23 +/- 1 kJ mol(-1) and DeltaS++ = -199 +/- 4 J mol(-1) K(-1) were obtained. Crystal structures of bromo-(tetrachlorocatecholato-O,O')(bis((2-pyridyl)methyl)-2-pyridylamine-N,N',N')-iron(III), (mu-oxo)-bis(bromo)(bis((2-pyridyl)methyl)-2-pyridylamine-N,N',N' ',N')-diiron(III), dichloro-((2-(2-pyridyl)ethyl)bis((2-pyridyl)methyl)amine-N,N',N' ',N')-iron(III) and (tetrachlorocatecholato-O,O')((2-(2-pyridyl)ethyl)bis((2-pyridyl)methyl)amine-N,N',N' ',N')-iron(III) are reported.  相似文献   

14.
The compounds [K(18-crown-6)](3)[Ir(Se(4))(3)] (1), [K(2.2.2-cryptand)](3)[Ir(Se(4))(3)].C(6)H(5)CH(3) (2), and [K(18-crown-6)(DMF)(2)][Ir(NCCH(3))(2)(Se(4))(2)] (3) (DMF = dimethylformamide) have been prepared from the reaction of [Ir(NCCH(3))(2)(COE)(2)][BF(4)] (COE = cyclooctene) with polyselenide anions in acetonitrile/DMF. Analogous reactions utilizing [Rh(NCCH(3))(2)(COE)(2)][BF(4)] as a Rh source produce homologues of the Ir complexes; these have been characterized by (77)Se NMR spectroscopy. [NH(4)](3)[Ir(S(6))(3)].H(2)O.0.5CH(3)CH(2)OH (4) has been synthesized from the reaction of IrCl(3).nH(2)O with aqueous (NH(4))(2)S(m)(). In the structure of [K(18-crown-6)](3)[Ir(Se(4))(3)] (1) the Ir(III) center is chelated by three Se(4)(2)(-) ligands to form a distorted octahedral anion. The structure contains a disordered racemate of the Deltalambdalambdalambda and Lambdadeltadeltadelta conformers. The K(+) cations are pulled out of the planes of the crowns and interact with Se atoms of the [Ir(Se(4))(3)](3)(-) anion. [K(2.2.2-cryptand)](3)[Ir(Se(4))(3)].C(6)H(5)CH(3) (2) possesses no short K.Se interactions; here the [Ir(Se(4))(3)](3)(-) anion crystallizes as the Deltalambdalambdadelta/Lambdadeltadeltalambda racemate. In the crystal structure of [K(18-crown-6)(DMF)(2)][Ir(NCCH(3))(2)(Se(4))(2)] (3), the K(+) cation is coordinated by an 18-crown-6 ligand and two DMF molecules and the anion comprises an octahedral Ir(III) center bound by two chelating Se(4)(2)(-) chains and two trans acetonitrile groups. The [Ir(Se(4))(3)](3)(-) and [Rh(Se(4))(3)](3)(-) anions undergo conformational transformations as a function of temperature, as observed by (77)Se NMR spectroscopy. The thermodynamics of these transformations are: [Ir(Se(4))(3)](3)(-), DeltaH = 2.5(5) kcal mol(-)(1), DeltaS = 11.5(2.2) eu; [Rh(Se(4))(3)](3)(-), DeltaH = 5.2(7) kcal mol(-)(1), DeltaS = 24.7(3.0) eu.  相似文献   

15.
The synthesis, structure, and physical properties of a series of oxo-bridged dinuclear Fe(III) complexes containing pendant naphthalene groups are described. The compounds [Fe(2)O(O(2)CCH(2)-C(10)H(7))(tren)(2)](BPh(4))(NO(3))(2) (8), [Fe(2)O(O(2)CCH(2)-C(10)H(7))(TPA)(2)](ClO(4))(3) (9), Fe(2)O(O(2)CCH(2)-C(10)H(7))(2)(Tp)(2) (10), and Fe(2)O((O(2)CCH(2)CH(2))(2)-C(10)H(6))(Tp)(2) (11) (where tren is tris(2-aminoethyl)amine, TPA is tris(2-pyridyl)amine, and Tp is hydrotrispyrazolylborate) have been characterized in terms of their structural, spectroscopic, magnetic, and photophysical properties. All four complexes exhibit moderately strong intramolecular antiferromagnetic exchange between the high-spin ferric ions (ca. -130 cm(-)(1) for H = -2JS(1).S(2)). Room-temperature steady-state emission spectra for compounds 8-11 in deoxygenated CH(3)CN solution reveal spectral profiles similar to methyl-2-naphthyl acetate and [Zn(2)(OH)(O(2)CCH(2)-C(10)H(7))(2)(TACN-Me(3))(2)](ClO(4)) (13, where TACN-Me(3) is N,N,N-1,4,7-trimethyltriazacyclononane) but are significantly weaker in intensity relative to these latter two compounds. Time-resolved emission data for the iron complexes following excitation at 280 nm can be fit to simple exponential decay models with tau(obs)(S)()1 = 36 +/- 2, 32 +/- 4, 30 +/- 5, and 39 +/- 3 ns for compounds 8-11, respectively. The decays are assigned to the S(1) --> S(0) fluorescence of naphthalene; all of the lifetimes are less than that of the zinc model complex (tau(obs)(S)()1 = 45 +/- 2 ns), indicating quenching of the S(1) state by the iron-oxo core. Nanosecond time-resolved absorption data on [Zn(2)(OH)(O(2)CCH(2)-C(10)H(7))(2)(TACN-Me(3))(2)](ClO(4)) reveal a feature at lambda(max) = 420 nm that can be assigned as the T(1) --> T(n) absorption of the naphthalene triplet; the rise time of 50 +/- 10 ns corresponds to an intersystem crossing rate of 2 x 10(7) s(-1). A similar feature (though much weaker in intensity) is also observed for compound 8. The order-of-magnitude reduction in the T(1) lifetime of the pendant naphthalene for all of the iron-oxo complexes (tau(obs)(T)1 = 5 +/- 2 micros vs 90 +/- 10 micros for [Zn(2)(OH)(O(2)CCH(2)-C(10)H(7))(2)(TACN-Me(3))(2)](ClO(4))) indicates quenching of the naphthalene triplet with an efficiency of >90%. Neither the naphthalene radical cation nor the reduced Fe(II)Fe(III) species were observed by transient absorption spectroscopy, implying that energy transfer is the most likely origin for the quenching of both the S(1) and T(1) states. Spectral overlap considerations strongly support a F?rster (i.e., dipolar) mechanism for energy transfer from the S(1) state, whereas the lack of phosphorescence from either the free naphthyl ester or the Zn model complex suggests Dexter transfer to the diiron(III) core as the principal mechanism of triplet quenching. The notion of whether spin exchange within the diiron(III) core is in part responsible for the unusual ability of the iron-oxo core to engage in energy transfer from both the singlet and triplet manifolds of naphthalene is discussed.  相似文献   

16.
Isoelectronic oxo-bridged diiron(III) aquo complexes of the homologous tripodal tetradentate amino acid ligands, N,N'-bis(2-pyridylmethyl)-3-aminoacetate (bpg(-)) and N,N'-bis(2-pyridylmethyl)-3-aminopropionate (bpp(-)), containing [(H(2)O)Fe(III)-(mu-O)-Fe(III)(H(2)O)](4+) cores, oligomerise, respectively, by dehydration and deprotonation, or by dehydration only, in reversible reactions. In the solid state, [Fe(2)(O)(bpp)(2)(H(2)O)(2)](ClO(4))(2) (1(ClO(4))(2)) exhibits stereochemistry identical to that of [Fe(2)(O)(bpg)(2)(H(2)O)(2)](ClO(4))(2) (2(ClO(4))(2)), with the ligand carboxylate donor oxygen atoms and the water molecules located cis to the oxo bridge and the tertiary amine group trans to it. Despite their structural similarity, 1(2+) and 2(2+) display markedly different aggregation behaviour in solution. In the absence of significant water, 1(2+) dehydrates and dimerises to give the tetranuclear complex, [Fe(4)(O)(2)(bpp)(4)](ClO(4))(4) (3(ClO(4))(4)), in which the carboxylate groups of the four bpp(-) ligands act as bridging groups between two [Fe(2)(O)(bpp)(2)](2+) units. Under similar conditions, 2(2+) dehydrates and deprotonates to form dinuclear and trinuclear oligomers, [Fe(2)(O)(OH)(bpg)(2)](ClO(4)) (4ClO(4)) and [Fe(3)(O)(2)(OH)(bpg)(3)](ClO(4)) (5(ClO(4))), related by addition of 'Fe(O)(bpg)' units. The trinuclear 5(ClO(4)), characterised crystallographically as two solvates 5(ClO(4)).3H(2)O and 5(ClO(4)).2MeOH, is based on a hexagonal [Fe(3)(O)(2)(OH)(bpg)(3)](+) unit, formally containing one hydroxo and two oxo bridges. The different aggregation behaviour of 1(ClO(4))(2) and 2(ClO(4))(2) results from the difference of one methylene group in the pendant carboxylate arms of the amino acid ligands.  相似文献   

17.
New heterobimetallic tetranuclear complexes of formula [Fe(III){B(pz)(4)}(CN)(2)(μ-CN)Mn(II)(bpy)(2)](2)(ClO(4))(2)·CH(3)CN (1), [Fe(III){HB(pz)(3)}(CN)(2)(μ-CN)Ni(II)(dmphen)(2)](2)(ClO(4))(2)·2CH(3)OH (2a), [Fe(III){B(pz)(4)}(CN)(2)(μ-CN)Ni(II)(dmphen)(2)](2)(ClO(4))(2)·2CH(3)OH (2b), [Fe(III){HB(pz)(3)}(CN)(2)(μ-CN)Co(II)(dmphen)(2)](2)(ClO(4))(2)·2CH(3)OH (3a), and [Fe(III){B(pz)(4)}(CN)(2)(μ-CN)Co(II)(dmphen)(2)](2)(ClO(4))(2)·2CH(3)OH (3b), [HB(pz)(3)(-) = hydrotris(1-pyrazolyl)borate, B(Pz)(4)(-) = tetrakis(1-pyrazolyl)borate, dmphen = 2,9-dimethyl-1,10-phenanthroline, bpy = 2,2'-bipyridine] have been synthesized and structurally and magnetically characterized. Complexes 1-3b have been prepared by following a rational route based on the self-assembly of the tricyanometalate precursor fac-[Fe(III)(L)(CN)(3)](-) (L = tridentate anionic ligand) and cationic preformed complexes [M(II)(L')(2)(H(2)O)(2)](2+) (L' = bidentate α-diimine type ligand), this last species having four blocked coordination sites and two labile ones located in cis positions. The structures of 1-3b consist of cationic tetranuclear Fe(III)(2)M(II)(2) square complexes [M = Mn (1), Ni (2a and 2b), Co (3a and 3b)] where corners are defined by the metal ions and the edges by the Fe-CN-M units. The charge is balanced by free perchlorate anions. The [Fe(L)(CN)(3)](-) complex in 1-3b acts as a ligand through two cyanide groups toward two divalent metal complexes. The magnetic properties of 1-3b have been investigated in the temperature range 2-300 K. A moderately strong antiferromagnetic interaction between the low-spin Fe(III) (S = 1/2) and high-spin Mn(II) (S = 5/2) ions has been found for 1 leading to an S = 4 ground state (J(1) = -6.2 and J(2) = -2.7 cm(-1)), whereas a moderately strong ferromagnetic interaction between the low-spin Fe(III) (S = 1/2) and high-spin Ni(II) (S = 1) and Co(II) (S = 3/2) ions has been found for complexes 2a-3b with S = 3 (2a and 2b) and S = 4 (3a and 3b) ground spin states [J(1) = +21.4 cm(-1) and J(2) = +19.4 cm(-1) (2a); J(1) = +17.0 cm(-1) and J(2) = +12.5 cm(-1) (2b); J(1) = +5.4 cm(-1) and J(2) = +11.1 cm(-1) (3a); J(1) = +8.1 cm(-1) and J(2) = +11.0 cm(-1) (3b)] [the exchange Hamiltonian being of the type H? = -J(S?(i)·S?(j))]. Density functional theory (DFT) calculations have been used to substantiate the nature and magnitude of the exchange magnetic coupling observed in 1-3b and also to analyze the dependence of the exchange magnetic coupling on the structural parameters of the Fe-C-N-M skeleton.  相似文献   

18.
The complex dications in the cooperative spin-crossover compound [FeL(2)][BF(4)](2) (2,6-di(pyrazol-1-yl)pyridine) pack through pi-pi interactions into a 2-D layered structure (a "terpyridine embrace" motif). The effects of doping the larger ClO(4)(-) ion into this lattice have been investigated. The bulk solids [FeL(2)][ClO(4)](x)[BF(4)](2-x) are isostructural with [FeL(2)][BF(4)](2) when x = 0.30 and 0.98, and isostructural with (structurally distinct) [FeL(2)][ClO(4)](2) when x = 1.89. When x = 1.68, powder samples are a mixture of both phases, but crystalline material adopts purely the ClO(4)(-) structure. Increasing the perchlorate content in the lattice for 0 < or =x< or = 1.68 causes a small decrease in T(1/2) and a narrowing of hysteresis in their spin-crossover, but with no significant reduction in cooperativity. It also leads to more pronounced decreases in DeltaH [by up to 3.2(5) kJ mol(-1)] and DeltaS [by up to 10(2) J mol(-1) K(-1)] for the transition by DSC. Single crystals of formula [FeL(2)][ClO(4)](y)[BF(4)](2-y) (y = 0.44 and 1.13) are isostructural with the pure BF(4)(-) salt. While their molecular structures are indistinguishable, the distances between cations in the lattice increase in the doped materials. Weakening of intermolecular pi-pi interactions between cations is the likely reason for the reduced enthalpy of spin-crossover as x increases. However, the biggest stuctural change is an increase in the spacing between the 2-D layers with increased ClO(4)(-). These results suggest that cooperativity in this material is transmitted within the terpyridine embrace layers.  相似文献   

19.
The synthesis and detailed characterization of the new spin crossover mononuclear complex [Fe(II)(DAPP)(abpt)](ClO(4))(2), where DAPP = [bis(3-aminopropyl)(2-pyridylmethyl)amine] and abpt = 4-amino-3,5-bis(pyridin-2-yl)-1,2,4-triazole, are reported. Variable-temperature magnetic susceptibility measurements and M?ssbauer spectroscopy have revealed the occurrence of an abrupt spin transition with a hysteresis loop. The hysteresis width derived from magnetic susceptibility measurements is 10 K, the transition being centered at T(c) downward arrow = 171 K for decreasing and T(c) upward arrow = 181 K for increasing temperatures. The crystal structure was resolved in the high-spin (293 and 183 K) and low-spin (123 K) states. Both spin-state structures belong to the monoclinic space group P2(1)/n (Z = 4). The thermal spin transition is accompanied by the shortening of the mean Fe-N distances by 0.177 A. The two main structural characteristics of [Fe(DAPP)(abpt)](ClO(4))(2) are a branched network of intermolecular links in the crystal lattice and the occurrence of two types of order-disorder transitions (in the DAPP ligand and in the perchlorate anions) accompanying the thermal spin change. These features are discussed relative to the magnetic properties of the complex. The electronic structure calculations show that the structural disorder in the DAPP ligand modulates the energy gap between the HS and LS states. In line with previous studies, the order-disorder phenomena and the spin transition in [Fe(DAPP)(abpt)](ClO(4))(2) are found to be interrelated.  相似文献   

20.
A series of complexes [M(bbtr)3]A2 (M=FeII, ZnII; bbtr=1,4‐bis(1,2,3‐triazol‐1‐yl)butane; A=ClO4?, BF4?) and [FexZn1?x(bbtr)3](ClO4)2 (0<x<1) dilute systems was synthesized and characterized. Earlier studies on [Fe(bbtr)3](ClO4)2 ( 1?ClO4 ), which crystallizes in space group P$\bar 3A series of complexes [M(bbtr)(3)]A(2) (M=Fe(II), Zn(II); bbtr=1,4-bis(1,2,3-triazol-1-yl)butane; A=ClO(4)(-), BF(4)(-)) and [Fe(x)Zn(1-x)(bbtr)(3)](ClO(4))(2) (0相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号