首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Low density modulation doped p-SiGe, where the holes lie in a strained SiGe quantum well, frequently exhibits anomalous insulating behaviour between filling factors ν=2 and 1. There is also anomalous metallic behavior with a metal-insulator transition between the two. It is shown that in these samples exchange effects are sufficiently large to induce the paramagnetic-ferromagnetic phase transition predicted by Giuliani and Quinn in 1985, also that the metallic and insulating behavior is associated with the coincidence of two Landau levels of opposite spin. A model calculation shows that while a ferromagnetic polarization may occur at integer filling factors screening suppresses it for non-integer filling factors. It is argued the Landau levels then stick-together and allow a spin-density instability to form. Because of the strong spin-orbit coupling in p-SiGe the transport properties of this state differ from those of other systems where a similar quantum Hall ferromagnet probably forms.  相似文献   

2.
The metal-insulator (MI) transition induced by a magnetic field was evidenced for the first time in compensated n-type GaSb layers grown by molecular beam epitaxy. The free electron densities were in the low 1016 cm−3 range or even slightly lower, so that the zero-field 3D electron gas was degenerate and, at the BMI magnetic field of the MI transition, it populates only the spin-split 0(+) Landau level (extreme quantum limit). On the metallic side of the MI transition a T1/3 dependence of the conductivity was assumed to fit the low-T data and to estimate the BMI value, which resulted of 9.1 T in the purest sample. The MI transition manifests in a strong increase of the diagonal resistivity with the magnetic field, but not of the Hall coefficient, suggesting that the apparent electron density is practically constant, whereas the mobility varies strongly. The evidence of a maximum in the temperature dependence of the Hall coefficient has been explained through a two channels transport mechanism involving localized and extended states.  相似文献   

3.
We have measured the surface acoustic wave velocity shift in a GaAs/AlGaAs heterostructure containing a two-dimensional electron system (2DES) in a low-density regime (<1010 cm−2) at zero magnetic field. The interaction of the surface acoustic wave with the 2DES is not well described by a simple model using low-frequency conductivity measurements. We speculate that this conflict is a result of inhomogeneities in the 2DES, which become very important at low density. This has implications for the putative metal-insulator transition in two dimensions.  相似文献   

4.
In this paper, we have investigated the Einstein relation for the diffusivity-to-mobility ratio (DMR) under magnetic quantization in non-linear optical materials on the basis of a newly formulated electron dispersion law by considering the crystal field constant, the anisotropies of the momentum-matrix element and the spin-orbit splitting constant, respectively, within the frame work of k·p formalism. The corresponding result for the three-band model of Kane (the conduction electrons of III-V, ternary and quaternary compounds obey this model) forms a special case of our generalized analysis. The DMR under magnetic quantization has also been investigated for II-VI (on the basis of Hopfield model), bismuth (using the models of McClure and Choi, Cohen, Lax and parabolic ellipsoidal, respectively), and stressed materials (on the basis of model of Seiler et al.) by formulating the respective electron statistics under magnetic quantization incorporating the respective energy band constants. It has been found, taking n-CdGeAs2, n-Hg1−xCdxTe, p-CdS, and stressed n-InSb as examples of the aforementioned compounds, that the DMR exhibits oscillatory dependence with the inverse quantizing magnetic field due to Subhnikov de Haas (SdH) effect with different numerical values. The DMR also increases with increasing carrier degeneracy and the nature of oscillations are totally dependent on their respective band structures in various cases. The classical expression of the DMR has been obtained as a special case from the results of all the materials as considered here under certain limiting conditions, and this compatibility is the indirect test of our generalized formalism. In addition, we have suggested an experimental method of determining the DMR for degenerate materials under magnetic quantization having arbitrary dispersion laws. The three applications of our results in the presence of magneto-transport have further been suggested.  相似文献   

5.
A review of recent research involving isotopically controlled semiconductors is presented. Studies with isotopically enriched semiconductor structures experienced a dramatic expansion at the end of the cold war when significant quantities of enriched isotopes of elements forming semiconductors became available for worldwide collaborations. Isotopes of an element differ in nuclear mass, may have different nuclear spins and undergo different nuclear reactions. Among the latter, the capture of thermal neutrons, which can lead to neutron transmutation doping, can be considered the most important one for semiconductors. Experimental and theoretical research exploiting the differences in all the properties has been conducted and will be illustrated with selected examples. Manuel Cardona, the longtime editor-in-chief of solid state communications has been and continues to be one of the major contributors to this field of solid state physics and it is a great pleasure to dedicate this review to him.  相似文献   

6.
A formalism is proposed to investigate quantum dynamics of localized states involving highly non-adiabatic time-evolution of electron-lattice systems. The effect of electron itinerancy is projected onto the dynamics of local variables through an integral kernel of Volterra's integral equation. The method is applied to the problem of thermal emission of carriers at deep level centers in semiconductors. It is shown that the real situation is in the adiabatic limit, and the probability of thermal emission of the trapped carriers is one per a single lattice oscillation, if the amplitude of the oscillation exceeds a critical value but zero if not.  相似文献   

7.
A unified band structure model is proposed to explain the magnetic ordering in Mn-doped semiconductors. This model is based on the p-d and d-d level repulsions between the Mn ions and host elements and can successfully explain magnetic ordering observed in all Mn doped II-VI and III-V semiconductors such as CdTe, GaAs, ZnO, and GaN. The model can also be used to explain the interesting behavior of GaMnN, which changes from ferromagnetic ordering to antiferromagnetic ordering as the Mn concentration increases. This model, therefore, is useful to provide a simple guideline for future band structure engineering of magnetic semiconductors.  相似文献   

8.
We measured reflectivity spectra of polycrystalline Mg1−xB2 samples, which show a metal-insulator transition with x. After performing the Kramers-Kronig analysis, the obtained optical conductivity spectra σ(ω) of MgB2 show a narrow Drude peak in the far-infrared region and a broad peak in the mid-infrared region. As x increases, the spectral weight of the Drude peak is strongly suppressed and that of the broad peak becomes enhanced a little. The existence of the broad mid-infrared peak in the insulating sample suggests that this peak might not be related to the free carriers in MgB2. In the far-infrared region, we also observe that the low energy dielectric constant of Mg1−xB2 diverges near the metal-insulator phase boundary (i.e. x=0.08). This result implies the possibility of a phase separation and a percolative metal-insulator transition in Mg1−xB2.  相似文献   

9.
The magnetic property of double doped manganite Nd0.5(1+x)Ca0.5(1−x)Mn(1−x)CrxO3 with a fixed ratio of Mn3+:Mn4+=1:1 has been investigated. For the undoped sample, it undergoes one transition from charge disordering to charge ordering (CO) associated with paramagnetic (PM)-antiferromagnetic (AFM) phase transition at T<250 K. The long range AFM ordering seems to form at 35 K, rather than previously reported 150 K. At low temperature, an asymmetrical M-H hysteresis loop occurs due to weak AFM coupling. For the doped samples, the substitution of Cr3+ for Mn3+ ions causes the increase of magnetization and the rise of Tc. As the Cr3+ concentration increases, the CO domain gradually becomes smaller and the CO melting process emerges. At low temperature, the FM superexchange interaction between Mn3+ and Cr3+ ions causes a magnetic upturn, namely, the second FM phase transition.  相似文献   

10.
Static computer simulation techniques have been employed for structural investigation of the La1−xSrxVO3 series. Potential parameters for V3+-O2− and V4+-O2− have been derived which reproduces the crystal structures of end members with sufficient accuracy. Variations of lattice parameters and bond distances with Sr concentration have been studied. The calculated lattice parameters decrease with increase in the Sr concentration. A structural phase transition from orthorhombic to cubic is observed at 50% Sr doping level.  相似文献   

11.
Effects of epitaxial stress on the metal-insulator transition of V2O3 have been studied for in the form of epitaxial thin films grown on α-Al2O3 (0001) and LiTaO3 (0001) substrates. A metallic phase is stabilized down to 2 K in the V2O3 thin film on α-Al2O3 (0001), where the a-axis is compressed by 4% owing to large epitaxial stress. On the other hand, the transition temperature TMI is raised by 20 K from the value of 170 K in bulk samples in the film on LiTaO3 (0001), where the a-axis is expanded. These results suggest an intimate relationship between the a-axis length and TMI in V2O3. The conductivity of the metallic ultrathin films shows logarithmic temperature dependence below 20 K, probably due to the Anderson localization in two-dimensional systems.  相似文献   

12.
We study dielectric critical behaviour around a continuous metal-insulator transition in crystalline Cesium Iodide induced by changing the lattice parameter. The ab initio calculations of band structure and various quantities related to the dielectric response are performed in the transition region, within the local density approximation of the density functional theory. These calculations allow us to establish the power-law singularities of various quantities on two sides of the transition. The exponents obtained here are mean-field like due to the approximation in which interactions and disorder are treated. The critical behaviour is discussed by applying the scaling principle to the wavevector and frequency dependent dielectric function. We further investigate the effect of dielectric anomalies on optical properties by calculating the reflectance around transition region taking the ionic contribution to the dielectric function also into account. We find that the reflectance as a function of frequency shows very different kind of behaviour on both sides of the metal-insulator transition.  相似文献   

13.
W. Liu  Z. Sun  S.J. Xie 《Physics letters. A》2008,372(23):4315-4318
Tunneling effect in one-dimensional organic semiconductors in the presence of an external electric field is studied within the framework of a tight-binding model and a nonadiabatic dynamical method. It is found that under a high electric field, electrons can transit from the valence band (VB) to the conduction band (CB), which is demonstrated to be Zener tunneling in organic semiconductors. The results also indicate a field-induced insulator-metal transition accompanied by the vanishing of the energy gap. It is found that, after the field is turned off, the Peierls phase cannot be recovered.  相似文献   

14.
15.
A series of the double-doping samples La(2+4x)/3Sr(1−4x)/3Mn1−xCuxO3(0?x?0.2)(0?x?0.2) with the Mn3+/Mn4+ ratio fixed at 2:1 have been prepared. The structural, magnetic, transport properties and magnetoresistance of the series samples have been investigated. It is found that no apparent crystal structure change is introduced by Cu doping up to x=0.20x=0.20. But the Curie temperature TCTC and magnetization M   are strongly affected by Cu substitution. A remarkable magnetotransport behavior, characterized by double bumps, is observed, and an obvious low-temperature upturn is found in the range of 0.07?x?0.120.07?x?0.12. As a result, the temperature range of colossal magnetoresistance (CMR) is greatly broadened. Moreover, it is found that the room temperature magnetoresistance (MR) of double-doping samples is obviously larger that the undoped La2/3Sr1/3Mn1−xCuxO3 at 300 K, which can give a guide for the adequate selection of the room temperature CMR materials.  相似文献   

16.
The angle resolved X-ray photoelectron spectroscopy measurements were used to monitor a level of contamination of the InP:S (1 0 0) substrates during the cleaning processes with deionized water and isopropanol. Some contaminations with carbon and oxygen were found for a broken under ultrahigh vacuum InP:S substrate, indicating the contamination of the crystal during the growth process. The substrates after cleaning with deionized water and isopropanol were contaminated with carbon, oxygen, nitrogen and silicon. Concentration of carbon decreases inwards the substrates while concentration of oxygen is enhanced even in the deeper layers for both processes. The nitrogen concentration is higher for the samples rinsed with water. Roughness of the surfaces is higher for the samples rinsed with water what indicated the AFM measurements.  相似文献   

17.
We propose a novel structure of single-electron two-channel multiplexer and demultiplexer based on three coupled single-dopant quantum dots defined by enhancement gates on AlGaAs/GaAs heterostructure. Two side-gates next to the dots are designed for applying a lateral switching field to the structure. A simple model of spherical parabolic quantum dot within effective-mass approximation demonstrates that the coupling strengths of the dots are adjustable by applying a lateral field. This gives the promise on achieving the functions of multiplexing and demultiplexing through the proposed structure.  相似文献   

18.
A method for non-intrusively monitoring the polarization dependent loss (PDL) of an installed fiber-optic transmission system is proposed using live dense wave division multiplexing (DWDM)-based traffic as the probing signal. The method extracts the statistical parameters of system PDL from the measured partial PDL data. Field measurements of PDL were performed on long-haul DWDM systems deployed in Sprint’s network and the results validated our theoretical model.  相似文献   

19.
In this paper, the author presents the results of measurements of the low-temperature and angular dependences of the ESR spectra of Eu2+ centers in defect Ga2S3 single crystals in the temperature range 8–29 K and for 0–180° orientations of the static magnetic field. The electron structure of impurity 151Eu atoms in Ga2S3:Eu single crystals has been studied by using the ESR method at different doping proportions of Eu atoms. Ga2S3 single crystals were grown from the melt using the Bridgman method. The Eu concentration was determined by atomic absorption analysis and X–ray fluorescence analysis (XRFA). By investigation on the ESR spectra, the author has first determined the values of charge states for Eu, which have turned out to be a Eu2+(4f7) ion with spin S=7/2, g=4.18±0.02 and concentration of the states of Eu N=6.3×1014 cm−3.  相似文献   

20.
We studied the evolution of the electronic structure of VO2 across the metal-insulator transition. The electronic structure was calculated using the standard TB-LMTO-ASA method. The calculated DOS was compared to previous photoemission and X-ray absorption spectra. The electronic structure is discussed in terms of the usual molecular-orbital scheme. In the metallic phase, the d band appears at the bottom of the V 3d bands and crosses the Fermi level. In the insulating phase, the d band is split around 2 eV opening a pseudo band gap at the Fermi level. The largest effect of the splitting appears in the unoccupied part of the d band. The calculated value of the splitting accounts for 77% of the experimental value, 2.6 eV. The results suggest that electron-lattice interaction seems to be the dominant factor in the splitting of the d band.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号