首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Contactless electroreflectance (CER) spectroscopy has been applied to investigate the optical transitions in Ga(In)NAs/GaAs quantum well (QW) structures containing Sb atoms. The identification of the optical transitions has been carried out in accordance with theoretical calculations which have been performed within the framework of the effective mass approximation. Using this method, the bandgap discontinuity for GaN0.027As0.863Sb0.11/GaAs, Ga0.62In0.38As0.954N0.026Sb0.02/GaAs, and Ga0.61In0.39As0.963N0.017Sb0.02/GaN0.027As0.973/GaAs QW structures has been determined. It has been found that the conduction-band offset is ∼50 and ∼80% for GaN0.027As0.863Sb0.11/GaAs and Ga0.62In0.38As0.954N0.026Sb0.02/GaAs QWs, respectively. It corresponds to 264 and 296 meV depth QW for electrons and heavy-holes in GaN0.027As0.863Sb0.11/GaAs QW; and 520 and 146 meV depth QW for electrons and heavy-holes in Ga0.62In0.38As0.954N0.026Sb0.02/GaAs QW. In the case of the Ga0.61In0.39As0.963N0.017Sb0.02/GaN0.027As0.973/GaAs step-like QW structure it has been shown that the depth of electron and heavy-hole Ga0.61In0.39As0.963N0.017Sb0.02/GaN0.027As0.973 QW is ∼144 and ∼127 meV, respectively.  相似文献   

2.
X-ray absorption near-edge spectroscopy (XANES) is used to study the N environment in bulk GaN and in GaNyAs1−y epilayers on GaAs (0 0 1), for y∼5%. Density-functional optimized structures were used to predict XANES via multiple-scattering theory. We obtain striking agreement for pure GaN. An alloy model with nitrogen pairs on Ga accurately predicts the threshold energy, the width of the XANES ‘white line’, and features above threshold, for the given X-ray polarization. The presence of large quantitities of N-pairs may point to a role for molecular N2 in epitaxial growth kinetics.  相似文献   

3.
Optical properties of the GaNAs/GaAs triple quantum well structures were characterized by using photoreflectance and photoluminescence spectroscopy at different temperatures. The excitonic interband transitions of the triple quantum well systems were observed in the spectral range above hν=Eg(GaNxAs1−x). A matrix transfer algorithm was used to match the GaNxAs1−x/GaAs boundary conditions and calculate the triple quantum well subband energies numerically for theoretical comparison. The internal electric field in the system was extracted from Franz-Keldysh oscillations in the photoreflectance spectra. The influences of the annealing treatment on the transition energy and the internal electric field are also analyzed.  相似文献   

4.
We study the effect of the GaAsN narrow QWs on the optical properties of the GaInNAsSb/GaAs QWs using photoluminescence spectroscopy. A drastic effect of the N-rich layers on the QW photoluminesecnec (PL) intensity was observed with a strong influence of the spacer thickness. In the PL spectra a broad band caused by excitonic transitions related with N-related clusters in GaAs barriers is found. Based on calculations from experimental data, we have identified the low QW peak energy to the E1-H1 transition using the shear deformation potentials report Δp/p = 0.24.  相似文献   

5.
Reflection high-energy electron diffraction, atomic force microscopy, transmission electron microscopy, and double-crystal X-ray curves showed that high-quality InAs quantum dot (QD) arrays inserted into GaAs barriers were embedded in an Al0.3Ga0.7As/GaAs heterostructure. The temperature-dependent photoluminescence (PL) spectra of the InAs/GaAs QDs showed that the exciton peak corresponding interband transition from the ground electronic subband to the ground heavy-hole subband (E1-HH1) was dominantly observed and that the peak position and the full width at half maximum corresponding to the interband transitions of the PL spectrum were dependent on the temperature. The activation energy of the electrons confined in the InAs/GaAs QDs was 115 meV. The electronic subband energy and the energy wave function of the Al0.3Ga0.7As/GaAs heterostructures were calculated by using a self-consistent method. The electronic subband energies in the InAs/GaAs QDs were calculated by using a three-dimensional spatial plane wave method, and the value of the calculated (E1-HH1) transition in the InAs/GaAs QDs was in reasonable agreement with that obtained from the PL measurement.  相似文献   

6.
We have performed a first-principle Full Potential Linearized Augmented Plane Waves calculation within the local density approximation (LDA) to the zinc-blende AlxGa1−xAs1−yNy to predict its optical properties as a function of N and Al mole fractions. The accurate calculations of electronic properties such as band structures and optical properties like refractive index, reflectivity and absorption coefficient of AlxGa1−xAs and AlxGa1−xAs1−yNy with x≤0.375 and y up to 4% are presented. AlxGa1−xAs on GaAs have a lattice mismatch less than 0.16% and the lattice constant of AlxGa1−xAs has a derivation parameter of 0.0113±0.0024. The band gap energies are calculated by LDA and the band anticrossing model using a matrix element of CMN=2.32 and a N level of EN=(1.625+0.069x) eV. The results show that AlxGa1−xAs can be very useful as a barrier layer in separate confinement heterostructure lasers and indicate that the best choice of x and y AlxGa1−xAs1−yNy could be an alternative to AlxGa1−xAs when utilized as active layers in quantum well lasers and high-efficiency solar cell structures.  相似文献   

7.
We have investigated the effects of the nitrogen and indium concentrations on the photoionization cross-section and binding energy of shallow donor impurities in Ga1−xInxNyAs1−y/GaAs quantum wires. The numerical calculations are performed in the effective mass approximation, using a variational method. We observe that incorporation of small amounts of nitrogen and indium leads to significant changes of the photoionization cross-section and binding energy.  相似文献   

8.
We use a modified band-anticrossing (BAC) model to investigate the band dispersion in a GaNxAs1-x/AlGaAs quantum well (QW) as a function of hydrostatic pressure. The band edge mass increases considerably more quickly with pressure than in the case of a GaAs/AlGaAs QW, and the subband separation also decreases significantly. We predict that the strong anticrossing interaction between the GaAs host conduction band and isolated N levels will inhibit tunnelling through the QW for a range of energy above the isolated N levels. The energy of N resonant states depends strongly on details of the local environment, giving a broader calculated distribution of N states in GaInNAs compared to GaNAs.  相似文献   

9.
The correlated function expansion (CFE) interpolation procedure was presented to efficiently estimate principal energy band gaps and lattice constants of the quaternary alloy AlxGa1−xSbyAs1−y over the entire composition variable space. The lattice matching conditions between x and y for the alloy AlxGa1−xSbyAs1−y substrated to InAs and GaSb were obtained by optimizing the alloy lattice constant to that of the substrates. The corresponding principal band gaps (E(Γ), E(L), and E(X)) were also calculated along the lattice matching condition on each substrate (InAs and GaSb).  相似文献   

10.
The Shubnikov-de Haas (S-dH) results at 1.5 K for AlxGa1−xN/AlN/GaN heterostructures and the fast Fourier transformation data for the S-dH data indicated the occupation by a two-dimensional electron gas (2DEG) of one subband in the GaN active layer. Photoluminescence (PL) spectra showed a broad PL emission about 30 meV below the GaN exciton emission peak at 3.474 eV that could be attributed to recombination between the 2DEG occupying in the AlN/GaN heterointerface and photoexcited holes. A possible subband structure was calculated by a self-consistent method taking into account the spontaneous and piezoelectric polarizations, and one subband was occupied by 2DEG below the Fermi level, which was in reasonable agreement with the S-dH results. These results can help improve understanding of magnetotransport, optical, and electronic subband properties in AlxGa1−xAs/AlN/GaN heterostructures.  相似文献   

11.
Transmission electron microscopy (TEM) and photocurrent (PC) measurements were carried out to investigate the microstructural properties and excitonic transitions in InxGa1−xAs/In0.52Al0.48As multiple quantum wells (MQWs) for x = 0.54, 0.57 and 0.60. TEM images showed that high-quality 11-period InxGa1−xAs/In0.52Al0.48As MQWs had high-quality heterointerfaces. The results for the PC spectra at 300 K showed that the peaks corresponding to the excitonic transitions from the ground state electronic sub-band to the ground state heavy-hole band (E1-HH1) and the ground state electronic sub-band to the ground state light-hole band (E1-LH1) became closer to each other with decreasing In mole fraction and that E1-HH1 and E1-LH1 excitonic peaks shifted to longer wavelength with increasing applied electric field. The calculated values of the E1-HH1 interband transition energies were in qualitative agreement with those obtained form the PC measurements with and without applied electric field. These results can be helpful in understanding potential applications of InxGa1−xAs/InyAl1−yAs MQWs dependent on In mole fraction and applied electric field in long-wavelength optoelectronic devices.  相似文献   

12.
Theoretical investigations of the conduction band offset (CBO) and valence band offset (VBO) of the relaxed and pseudo-morphically strained GaAs1−xNx/GaAs1−yNy heterointerfaces at various nitrogen concentrations (x and y) within the range 0-0.05 and along the [0 0 1] direction are performed by means of the model-solid theory combined with the empirical pseudopotential method under the virtual crystal approximation that takes into account the effects of the compositional disorder. It has been found that for y < x, the CBO and VBO have negative and positive signs, respectively, whereas the reverse is seen when y > x. The band gap of the GaAs1−xNx over layer falls completely inside the band gap of the substrate GaAs1−yNy and thus the alignment is of type I (straddling) for y < x. When y > x, the alignment remains of type I but in this case it is the band gap of the substrate GaAs1−yNy which is fully inside the band gap of the GaAs1−xNx over layer. Besides the CBO, the VBO and the relaxed/strained band gap of two particular cases: GaAs1−xNx/GaAs and GaAs1−xNx/GaAs0.98N0.02 heterointerfaces have been determined.  相似文献   

13.
Considering the strong built-in electric field (BEF) induced by the spontaneous and piezoelectric polarizations and the intrasubband relaxation, we investigate the linear and nonlinear intersubband optical absorptions in InxGa1-xN/AlyGa1-yN strained single quantum wells (QWs) by means of the density matrix formalism. Our numerical results show that the strong BEF is on the order of MV/cm, which can be modulated effectively by the In composition in the QW. This electric field greatly increases the electron energy difference between the ground and the first excited states. The electron wave functions are also significantly localized in the QW due to the BEF. The intersubband optical absorption peak sensitively depends on the compositions of In in the well layer and Al in the barrier layers. The intersubband absorption coefficient can be remarkably modified by the electron concentration and the incident optical intensity. The group-III nitride semiconductor QWs are suitable candidate for infrared photodetectors and near-infrared laser amplifiers.  相似文献   

14.
An analysis is presented of experimental and theoretical results of the MnFeAsyP1−y (0.15≤y≤0.66) and Mn2−xFexAs0.5P0.5 (0.5≤x≤1.0) systems to identify main traits that underlie the mechanism of formation of different antiferromagnetic (AF) phases in the two systems. The discrepancy between the calculated from first principles and experimental values of the magnetic moment in the ferromagnetic phase with cation substitution in the system Mn2−xFexAs0.5P0.5 is due to the appearance of a canted magnetic structure. In this case, the emergence of an AF phase with decreasing iron concentration precedes a significant change in the electronic d-band filling. In the model of the spiral structure in the system of itinerant electrons it is shown that the stabilization of the AF phase with decreasing arsenic concentration, while maintaining the number of d-electrons, is a consequence of changes in the shape of the density of electronic states that occur with a decrease in unit-cell volume.  相似文献   

15.
The ground state energy of quasi-two-dimensional electron-hole liquid (EHL) at zero temperature is calculated for type-II (GaAs)m/(AlAs)m (5≤m≤10) quantum wells (QWs). The correlation effects of Coulomb interaction are taken into account by a random phase approximation of Hubbard. Our EHL ground state energy per electron-hole pair is lower than the exciton energy calculated recently for superlattices, so we expected that EHL is more stable state than excitons at high excitation density. It is also demonstrated that the equilibrium density of EHL in type-II GaAs/AlAs QWs is of one order of magnitude larger than that in type-I GaAs/AlAs QWs.  相似文献   

16.
The impurity-photoconductivity spectrum is observed for strained quantum wells of the p-InGaAs/GaAs solid solution at T= 4.2 K. In addition to the broad photoconductivity band attributed to the transitions from the acceptor ground state to the continuum of the first size-quantization subband, the spectrum exhibits a peak due to the transitions from the ground state to the excited localized acceptor state, a band corresponding to the transitions to the resonance states associated with the second heavy-hole size-quantization subband, and a narrow photoconductivity peak (Fano resonance) in the spectral range corresponding to the optical-phonon energy.  相似文献   

17.
The structural and magnetic properties of epitaxial In1−xMnxAs1−yPy quaternary layers with Mn content ranging from 0.01 to 0.04 and phosphorous content ranging from 0.11 to 0.21 were studied. X-ray diffraction indicated that the films were two phase consisting of an InMnAsP solid solution and hexagonal MnAs nanoprecipitates. Addition of phosphorus promoted precipitate formation. Films were ferromagnetic showing hysteretic behavior in the field dependence of magnetization at 5 and 298 K. From field-cooled magnetization measurements ferromagnetic transitions were observed at 280 and 325 K. The zero field-cooled magnetization versus temperature measurements showed irreversibility for T<300 K that was attributed to the presence of MnAs nanoprecipitates. The calculated coercivity using the Neel model was 1380 G compared to the experimental value of 380 G at 5 K. The difference was attributed to a strong inter-cluster exchange that stabilizes the ferromagnetic state.  相似文献   

18.
Optical properties of InGaAsN/GaAs and InGaAsN/GaAsN/GaAs quantum well structures with InGaP cladding layers were studied by photoreflectance at various temperatures. The excitonic interband transitions of the InGaAsN/GaAsN/GaAs QW systems were observed in the spectral range above =Eg(InGaAsN). The confinement potential of the system with strain compensating GaAsN barriers became one step broader, thus more quantum states and larger optical transition rate were observed. A matrix transfer algorithm was used to calculate the subband energies numerically. Band gap energies, effective masses were adopted from the band anti-crossing model with band-offset values adjusted to obtain the subband energies to best fit the observed optical transition features. A spectral feature below and near the GaAs band gap energy from GaAs barriers is enhanced by the GaAs/InGaP interface space charge accumulation induced internal field.  相似文献   

19.
The band structure of HgTe quantum wells (QWs) has been determined from absorption experiments on superlattices in conjunction with calculations based on an 8×8 k·p model. The band structure combined with self-consistent Hartree calculations has enabled transport results to be quantitatively explained.Rashba spin–orbit, (SO) splitting has been investigated in n-type modulation doped HgTe QWs by means of Shubnikov–de Haas oscillations (SdH) in gated Hall bars. The heavy hole nature of the H1 conduction subband in QWs with an inverted band structure greatly enhances the Rashba SO splitting, with values up to 17 meV.By analyzing the SdH oscillations of a magnetic two-dimensional electron gas (2DEG) in modulation-doped n-type Hg1−xMnxTe QWs, we have been able to separate the gate voltage-dependent Rashba SO splitting from the temperature-dependent giant Zeeman splitting, which are of comparable magnitudes. In addition, hot electrons and Mn ions in a magnetic 2DEG have been investigated as a function of current.Nano-scale structures of lower dimensions are planned and experiments on sub-micrometer magneto-transport structures have resulted in the first evidence for ballistic transport in quasi-1D HgTe QW structures.  相似文献   

20.
Compositional behavior of Urbach absorption edge is studied as well as the effect of compositional disordering on the parameters of exciton-phonon interaction, phase transition temperatures and electric conductivity in Cu6P(S1−xSex)5Br1−yIy superionic solid solutions. The effect of different types of disordering on the optical absorption processes and specific features of compositional changes in the absorption edge spectra under S→Se and Br→I anion substitution in the mixed crystals are investigated. (x, T) phase diagrams for Cu6P(S1−xSex)5X (X=I, Br) solid solutions are studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号