首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
M. Baron 《Surface science》2006,600(18):3924-3927
The structure of ultrathin epitaxial Fe films grown on Cu(0 0 1) at room temperature is investigated by grazing scattering of fast H and He atoms. By making use of ion beam triangulation, direct information on the atomic structure of the film and substrate surfaces are obtained. We discuss a new variant of this method based on the detection of the number of emitted electrons. The data is analyzed via computer simulations using classical mechanics which provides a quantitative analysis with respect to projectile trajectories.  相似文献   

2.
M. Busch  M. Gruyters  H. Winter 《Surface science》2006,600(13):2778-2784
The growth, structure, and morphology of ultrathin iron oxide layers formed on a Fe(1 1 0) single crystal surface are investigated by Auger electron spectroscopy, low energy electron diffraction, and grazing ion scattering. For Fe oxidation by atomic instead of molecular oxygen, the gas exposure can be reduced by almost two orders of magnitude because surface sticking and dissociation are not limiting the growth process. A well-ordered FeO(1 1 1) film with low defect density is only obtained with atomic oxygen. Compared to the bulk, the FeO lattice is laterally compressed by about 5-6% resulting in an in-plane oxygen (Fe) nearest-neighbor distance of 2.87 Å. Independent of the preparation method, long-range structural order is poor if the oxide film thickness is increased to 3-5 layers. This is attributed to the relatively large lattice mismatch between FeO(1 1 1) and Fe(1 1 0).  相似文献   

3.
Electronic, magnetic and structural properties of atomic oxygen adsorbed in on-surface and subsurface sites at the two most densely packed iron surfaces are investigated using density functional theory combined with a thermodynamics formalism. Oxygen coverages varying from a quarter to two monolayers (MLs) are considered. At a 1/4 ML coverage, the most stable on-surface adsorption sites are the twofold long bridge sites on the (1 1 0), and the fourfold-hollow sites on the (1 0 0) surface. The presence of on-surface oxygen atoms enhances the magnetic moments of the atoms of the two topmost Fe layers. Detailed results on the surface magnetic properties, due to O incorporation, are presented as well. Subsurface adsorption is found unfavored. The most stable subsurface O, in tetrahedral positions at the (1 0 0) and octahedral ones at the (1 1 0) surface, are characterized by substantially lower binding than that in the on-surface sites. Subsurface oxygen increases the interplanar distance between the uppermost Fe layers. The preadsorbed oxygen overlayer enhances binding of subsurface O atoms, particularly for tetrahedral sites beneath the (1 1 0) surface.  相似文献   

4.
We present experimental results on the structural and magnetic properties of series of Fe thin films evaporated onto Si(1 1 1), Si(1 0 0) and glass substrates. The Fe thickness, t, ranges from 6 to110 nm. X-ray diffraction (XRD) and atomic force microscopy (AFM) have been used to study the structure and surface morphology of these films. The magnetic properties were investigated by means of the Brillouin light scattering (BLS) and magnetic force microscopy (MFM) techniques. The Fe films grow with (1 1 0) texture; as t increases, this (1 1 0) texture becomes weaker for Fe/Si, while for Fe/glass, the texture changes from (1 1 0) to (2 1 1). Grains are larger in Fe/Si than in Fe/glass. The effective magnetization, 4πMeff, inferred from BLS was found to be lower than the 4πMS bulk value. Stress induced anisotropy might be in part responsible for this difference. MFM images reveal stripe domain structure for the 110 nm thick Fe/Si(1 0 0) only.  相似文献   

5.
M. Busch  M. Gruyters  H. Winter 《Surface science》2006,600(19):4598-4604
We investigated the structural and magnetic properties of Fe(1 1 0) for molecular oxygen adsorption at room temperature. For the c(2 × 2) and c(3 × 1) superstructures, spin-polarized secondary electron emission (SPSEE) induced by protons and electrons reveals a nearly unchanged polarization compared to clean Fe(1 1 0). An appreciable decrease in polarization is found for the disordered layer of oxygen at a coverage Θ ≈ 1. This decrease is more pronounced for the spin polarization determined by electron capture (EC) to excited atomic He levels after grazing scattering. From a comparison of data obtained by proton-induced SPSEE and spin-polarized EC we conclude that the polarization at the vacuum boundary vanishes for an oxygen coverage Θ ≈ 1 while the polarization in the underlying Fe substrate layers is hardly changed.  相似文献   

6.
An approach is described to promote epitaxial growth of thin metal films on single-crystal metal substrates by stabilizing the interface with an extremely thin metallic interlayer. A single atomic layer of a metal is deposited at the interface, Ti on Al(1 0 0) in this case, prior to the growth of the metal film of interest to produce an epitaxial interface in a system that is otherwise characterized by interdiffusion and disorder. The stabilized interface reduces interdiffusion and serves as a template for ordered film growth. Using Rutherford backscattering and channeling techniques along with low-energy electron diffraction and low-energy He+ scattering, it is demonstrated that an atomically thin layer of Ti metal deposited at the Fe-Al interface, a system well known for considerable intermixing at room temperature, reduces interdiffusion and promotes the epitaxial growth of Fe films on the Al(1 0 0) surface. The decrease in ion scattering yield for Al atoms, Fe-Fe shadowing and long-range order of the surface suggest that the epitaxial growth of Fe is greatly improved when the Ti interlayer is introduced prior to Fe deposition. Off-normal ion channeling experiments provide clear evidence for the bcc structure of Fe on the Ti/Al(1 0 0) template with the measured average (1 0 0) interplanar distance of 1.44 Å in the Fe overlayer.  相似文献   

7.
The atomic interaction and magnetic properties of ultrathin Fe films grown on cleaved and polished MgO(1 0 0) surfaces were studied by conversion electron Mössbauer spectroscopy (CEMS). 57Fe layers were deposited as probe atoms in different layer positions in 10 ML thick Fe films. Fe layers of different thicknesses were formed on polished and cleaved substrate surfaces at RT deposition. The analysis of the spectra showed no Fe-O2- interaction in MgO/Fe interface. FeO phase formation was excluded. The Mössbauer spectrum of 5 ML 57Fe sample showed enhanced internal magnetic field at 80 K. No interdiffusion of 57Fe and 56Fe atoms was observed between the layers at room temperature.  相似文献   

8.
In this work an analysis of experimental and theoretical data associated with the scattering and attenuation of electrons in the Pt(1 1 1) and Cu(1 1 1) crystalline samples is presented. The information about the crystalline structure of the first few atomic layers was obtained by the directional elastic peak electron spectroscopy (DEPES) at the primary electron beam energies Ep from 1.5 keV to 2.0 keV. The comparison of the experimental and theoretical DEPES distributions indicates a qualitative agreement between experiment and theory. The relative signal values associated with the intensity maxima were found to be different. The latter effect suggest that the electron attenuation in the crystalline samples can have an anisotropic character. A qualitative analysis of the characteristic pattern around the [1 1 1] direction concerning the calculation of the scattering factors was performed. The collective scattering of electrons by atoms located around the threefold symmetry axis resulting in the so called ring focusing effect is discussed.  相似文献   

9.
The adsorption of calcium (Ca) atoms on a Cu(0 0 1) surface has been studied by low-energy electron diffraction (LEED) at 130, 300 and 400 K. It is found that a (4 × 4) was the only LEED pattern appeared at 400 K while a quasi-hexagonal structure was formed in a wide range of submonolayer coverage at 130 K. At 300 K, the (4 × 4) LEED spots were broad and weak. The (4 × 4) structure formed at 400 K was determined by a tensor LEED I-V analysis. It is a new-type of surface alloys consisting of five substitutional Ca atoms, nine surface Cu atoms, and two atomic vacancies in the unit cell. In spite of a quite large size-difference between Ca (3.94 Å) and Cu (2.55 Å) atoms, all Ca atoms are located at the substitutional sites. Among surface alloys so far reported, the atomic size ratio between Cu and Ca in the (4 × 4), 1.54, is the largest. Optimized structural parameters reveal that large lateral displacements of surface Cu atoms, being enabled by the appearance of the vacancies, allow the formation of the (4 × 4) structure.  相似文献   

10.
With static relaxation, the surface diffusion activation energies of a single Cu adatom migrated by both atomic exchange and hopping mechanisms and the forces acted on the diffusing adatom from other atoms of Cu (0 0 1) or (1 1 0) surface are calculated by using the MAEAM. When adatom migrated on Cu (0 0 1) or (1 1 0) surface, the increment curves of the system energy by hopping mechanism are symmetrical and the saddle points are in the midpoints of the migration path, but the ones by the exchange mechanism are dissymmetrical and the saddle points are always close to the initial hole positions of the adatom and away from the initial equilibrium positions of the exchanged atom. From minimization of both the diffusion activation energy and the force acted on the diffusing adatom from other atoms, we found that, on Cu (0 0 1) surface the favorable diffusion mechanism is hopping mechanism, however, on Cu (1 1 0) surface, hopping via long bridge is easier than the exchange mechanism but the hopping via short bridge is more difficult than the exchange mechanism.  相似文献   

11.
The structure, energetics and magnetic properties of the quasihexagonal reconstruction of the Ir(1 0 0) surface and nanostructures formed by Fe atoms on this surface have been investigated using first-principles density functional theory with generalized gradient corrections. We find the reconstructed (1 × 5) surface to be 0.10 eV/(1 × 1) area lower in energy than the unreconstructed surface and we demonstrate that first-principles calculations can achieve quantitative agreement with experiment even for such long-period and deep-going reconstructions. For Fe coverage of 0.4 monolayers (ML) we have studied the stripe-like structure with biatomic Fe rows placed in the troughs of the (1 × 5)-reconstructed surface. Results of nonmagnetic calculations agree well with the structure inferred from STM data. Higher Fe coverages lead to a de-reconstruction of the Ir substrate. At 0.8 ML coverage a surface compound with composition Fe4Ir is formed, which shows an appreciable buckling. In this case, a ferromagnetic calculation leads to good agreement with the low-temperature LEED data. We predict that the (1 × 5) periodicity of the mixed interface layer will persist also in thicker films with a pure Fe surface. Films with 1-4 ML Fe are predicted to be tetragonally distorted and ferromagnetic, with an axial ratio corresponding well to an elastic distortion of the Fe lattice.  相似文献   

12.
The deposition growth and annealing behaviors of Cu atoms onto Cu(0 0 1) are investigated in atomic scale by molecular dynamics (MD) simulation. The results indicate that the film grows approximately in a layer-island mode as the incident energy is from 1 to 5 eV, while surface intermixing can be significantly observed at 10 eV. The surface roughness of the film decreases with increasing the incident energy, and the film after annealing becomes smoother and more ordered. These phenomena may be attributed to the enhanced atomic mobility for higher incident energy and thermal annealing. It also indicates that atomic mixing is more significant with increasing both the incident energy and substrate temperature. In addition, the peak-to-peak distances of radial distribution function (RDF) clearly indicate that the films before and after annealing are still fcc structure except for that at the melting temperature of 1375.6 K. After annealing, the film at the melting temperature returns to fcc structure instead of amorphous. Moreover, the residual stress and Poisson ratio of the film are remarkably affected by the thermal annealing. Furthermore, the density of thin film is obviously affected by the substrate temperature and annealing process. Therefore, one can conclude that high incident energy, substrate temperature and thermal annealing could help to enhance the surface morphology and promote the microstructure of the film.  相似文献   

13.
Epitaxial Fe(1 1 0) films with thicknesses of 100-800 nm on Cu(0 0 1) and Ni(0 0 1) buffer layers grown on MgO(0 0 1) substrates have been fabricated. These films contain Fe(1 1 0) crystallites which are in the Pitsch orientation relationship. Magnetization and the fourfold in-plane magnetic anisotropy constants of these films have been determined by torque measurements. All the samples under study are characterized by a fourfold magnetic anisotropy with easy axes parallel to the [1 0 0] and [0 1 0] directions of Cu(0 0 1) and Ni(0 0 1) layers. The measured values of the constant for Fe(1 1 0)/Cu(0 0 1) are found to depend on deposition temperature; a maximum value of (2.5±0.1)×105 erg/cm3 is reached after annealing at 600 °С. The in-plane torque measurements on Fe(1 1 0)/Ni(0 0 1) bilayers obtained at 300 °С, on the other hand, exhibit a constant value of (2.7±0.1)×105 erg/cm3. Assuming an exchange interaction between the Fe(1 1 0) crystallites, which are in the Pitsch orientation relationship, the fourfold in-plane magnetic anisotropy has been calculated as 2.8×105 erg/cm3. The deviations of the experimental values from the predicted one may be explained by the formation of a polycrystalline phase within the Fe(1 1 0) layer and a partial disorientation of the epitaxial crystallites.  相似文献   

14.
Using scanning tunneling microscopy (STM), X-ray photoemission spectroscopy (XPS) and density functional theory (DFT) calculations we have studied the reduction of ultra-thin films of FeO(1 1 1) grown on Pt(1 1 1) after exposure to atomic hydrogen at room temperature. A number of new ordered, partly-reduced FeOx structures are identified and as a general trend we reveal that all the reduced FeOx structures incorporate 2-fold coordinated Fe atoms as opposed to the original 3-fold coordinated Fe atoms in the FeO film. We find that when all the Fe atoms are 2-fold O-coordinated the FeOx surface structure is resistant to further reduction at room temperature. We observe that water easily dissociates on the most heavily reduced FeOx, structure in contrast to the initially inert FeO film, and reveal that it is possible to partially re-oxidize the FeOx film by heating the surface slightly in the presence of water.  相似文献   

15.
Based on the generalized gradient approximation, full potential linearized augmented plane-wave (FP-LAPW) calculations have been performed to study the stability and the interfacial structure of CoO/MnO (1 1 1). The surface energy, the strain energy and the binding energy are calculated and discussed. The calculations revealed that the CoO/MnO (1 1 1) is a stable interface structure. Also examined were the electronic properties and the atomic spin magnetic moments of the interface. It was found that the interface exhibited half-metallic property and the atomic magnetic moments were obviously weakened at the interface for metal atoms compared with the corresponding magnetic moments in bulk material.  相似文献   

16.
The intensity of metastable helium (He*) atoms which survive during the scattering from water- and benzene-adsorbed Cu(1 0 0) surfaces was measured. The survival probability (SP) of He* was found to be sensitive to the electronic states at around the Fermi level, which is derived from the adsorbate/metal hybridization and extend toward the vacuum. The SP is likely to depend largely on the kinetic energy of the He* atoms. The kinetic energy dependence can be understood on the basis of the He* decay mechanism. Metastable-atom deexcitation spectroscopy (MDS) and surface electronic structure calculation have been used for discussing the results for the He* SP.  相似文献   

17.
The atomic structure of Cs atoms adsorbed on the Si(0 0 1)(2 × 1) surface has been investigated by coaxial impact collision ion scattering spectroscopy. When 0.5 ML of Cs atoms are adsorbed on Si(0 0 1) at room temperature, it is found that Cs atoms occupy a single absorption site on T3 with a height of 3.18 ± 0.05 Å from the second layer of Si(0 0 1)(2 × 1) surface, and the bond length between Cs and the nearest Si atoms is 3.71 ± 0.05 Å.  相似文献   

18.
Growth and surface morphology of epitaxial Fe(1 1 0)/MgO(1 1 1)/Fe(1 1 0) trilayers constituting a magnetic tunnel junction were investigated by low-energy electron diffraction (LEED) and scanning tunneling microscopy (STM). STM reveals a grain-like growth mode of MgO on Fe(1 1 0) resulting in dense MgO(1 1 1) films at room temperature as well as at 250 °C. As observed by STM, initial deposition of MgO leads to a partial oxidation of the Fe(1 1 0) surface which is confirmed by Auger electron spectroscopy. The top Fe layer deposited on MgO(1 1 1) at room temperature is relatively rough consisting of clusters which can be transformed by annealing to an atomically flat epitaxial Fe(1 1 0) film.  相似文献   

19.
The layer resolved magnetic moments and magnetic anisotropy energy of Fe/Co superlattices and multilayers with bcc (0 0 1) and (1 1 0) orientations obtained from first principles simulations are reported here. The magnetic moment of Fe atoms are found to depend on the geometry, coordination number and proximity to Co atoms, whereas that of Co remains almost constant in the superlattices and multilayers. Mixing of atoms at the interface resulted in enhanced Fe magnetic moment while that of Co is unaffected. The magnetic anisotropy energy in superlattices and multilayers are found to be larger than the corresponding values of bulk counterparts. Calculated easy axis of magnetization is in the plane for all superlattice compositions considered in the study, while that in multilayers, changes with crystalline orientation and thickness of Co layers.  相似文献   

20.
Large and face dependent neutral fractions have been found recently in the scattering of Li+ by Cu(1 0 0) and Cu(1 1 1) surfaces. These results for high work function surfaces are unexpected within the ‘traditional’ picture of a Li+ ion departing from a jellium surface model. In the present work the Li+/Cu(1 0 0) and Li+/Cu(1 1 1) interacting systems are described by a previously developed bond-pair model based on the localized interactions between the projectile ion and the atoms of the surface, and on the extended features of the electronic band structure through the surface local density of states. By only including the resonant neutralization to the Li atom ground state we explained the face and energy dependences of the measured neutral fractions for large outgoing energy values. We found that the downward shift of the Li ionization level below the Fermi level caused by the short range chemical interactions, is the main responsible of a high neutralization by the resonant mechanism. The remaining differences between theory and experiment values can be explained in terms of the energy gaps and image potential states appearing in these surfaces. The calculated distance behaviours of the energy levels corresponding to the first excited (Li-1s22p) and the negative (Li-1s22s2) atomic configurations indicate that they can also participate in the ion-surface charge exchange process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号