首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The impingement and interdiffusion of adsorbed Pb and Bi layers spreading from separated 3D pure bulk sources on Cu(1 0 0) has been studied, at T = 513 K, by in situ scanning Auger microscopy. When the leading edges of the pure Pb and Bi diffusion profiles impinge, they both consist of low-coverage lattice gas surface alloyed phases. In these low-coverage phases, Pb displaces surface alloyed Bi and the point of intersection of the profiles drifts towards the Bi source. These features lead to the conclusion that Pb atoms are more strongly bound at surface alloyed sites in Cu(1 0 0) than Bi atoms. Once the total coverage (Pb + Bi) on the substrate reaches about one monolayer, Pb and Bi are dealloyed from the substrate, and the interdiffusion profiles become essentially symmetric. Pb and Bi mix in all proportions, with an interdiffusion coefficient of ∼10−13 m2/s. This is considerably smaller than the self-diffusion coefficients previously observed for pure Pb and Bi in their respective high-coverage phases, indicating that the mechanism of interdiffusion is different from that of self-diffusion. As interdiffusion proceeds, the point of intersection of the Pb and Bi profiles reverses its drift direction, leading to the conclusion that binding of Bi atoms to the Cu(1 0 0) substrate is stronger than that of Pb atoms in the highest-coverage surface dealloyed layers.  相似文献   

2.
The growth of Pb films on the Si(1 0 0)-2 × 1 surface has been investigated at low temperature using scanning tunneling microscopy. Although the orientation of the substrate is (1 0 0), flat-top Pb islands with (1 1 1) surface can be observed. The island thickness is confined within four to nine atomic layers at low coverage. Among these islands, those with a thickness of six layers are most abundant. Quantum-well states in Pb(1 1 1) islands of different thickness are acquired by scanning tunneling spectroscopy. They are found to be identical to those taken on the Pb(1 1 1) islands grown on the Si(1 1 1)7 × 7 surface. Besides Pb(1 1 1) islands, two additional types of Pb islands are formed: rectangular flat-top Pb(1 0 0) islands and rectangular three-dimensional (3D) Pb islands, and both their orientations rotate by 90° from a terrace to the adjacent one. This phenomenon implies that the structures of Pb(1 0 0) and 3D islands are influenced by the Si(1 0 0)-2 × 1 substrate.  相似文献   

3.
Previous studies of the initial stage of oxidation on clean single crystal of Cu(1 0 0) have been extended to the case of the Cu(1 1 0) surface. The dynamic observation of the nucleation and growth of Cu oxide by means of in situ ultra high vacuum transmission electron microscopy (UHV-TEM) shows a highly enhanced oxidation rate on Cu(1 1 0) surface as compared to Cu(1 0 0). The kinetic data on the nucleation and growth of the three-dimensional oxide islands agree well with our heteroepitaxial model of surface diffusion of oxygen.  相似文献   

4.
Lead (Pb) has been a prototypical system to study diffusion and reconstruction of silicon surfaces. However, there is a discrepancy in literature regarding the critical coverage at which island formation takes place in the Stranski-Krastanov (S-K) mode. We address this issue by studying the initial stages of evolution of the Pb/Si(1 1 1)7 × 7 system by careful experiments in ultra-high vacuum with in situ characterization by auger electron spectroscopy, electron energy loss spectroscopy and low-energy electron diffraction. We have adsorbed Pb onto clean Si(1 1 1 )7 × 7 surface with sub-monolayer control at different flux rates of 0.05 ML/min, 0.14 ML/min and 0.22 ML/min, at room temperature. The results clearly show that the coverage of the Pb adlayer before the onset of 3D Pb islands in the S-K mode depends on the flux rates. LEED results show the persistence of the (7 × 7) substrate reconstruction until the onset of the island formation, while EELS results do not show any intermixing at the interface. This suggests that the flux rates influence the kinetics of growth and the passivation of dangling bonds to result in the observed rate-dependent adlayer coverages.  相似文献   

5.
T.L. Chan  W.C. Lu  K.M. Ho 《Surface science》2006,600(14):179-183
The nanoscale hexagonal pattern observed in scanning tunneling microscopy (STM) for 3-layer and 4-layer Pb islands on Si(1 1 1) is studied theoretically. We found that besides thickness the atomic rearrangement at the Pb/Si interface plays an important role in determining the STM patterns. Electronic structures of the Pb film on Si(1 1 1) obtained from fully relaxed and unrelaxed Pb films are qualitatively different. Simulated STM images for Pb films with different stacking also show that the corrugation patterns are sensitive to the buried Pb-Si interfacial structure.  相似文献   

6.
K.L. Man 《Surface science》2007,601(20):4669-4674
Information on the kinetic regime of step motion and step permeability on the Si(1 1 1) (1 × 1) surface has been obtained from observations of island decay that were made with low energy electron microscopy. Island area during decay exhibits the expected power law dependence on time, with exponent, α, that is a qualitative indicator of the kinetic regime. A new method is presented for determining the kinetic length quantitatively from measurements of the decay exponent in the symmetric island decay geometry on top of a larger concentric circular island. Using this approach, we determine the kinetic length on the Si(1 1 1) (1 × 1) surface at 1163 K to be d ∼ 75a, where a is the lattice constant. It is shown that this result locates step motion firmly in the diffusion limited regime. Mass conservation of decaying island stacks is also observed at this temperature, which indicates that steps are effectively impermeable in the context of diffusion limited step kinetics.  相似文献   

7.
Structural and diffusion properties of a Cu(0 0 1)-c(2 × 2)-Pd surface and sub-surface ordered alloys are studied by using interaction potentials obtained from the embedded-atom method. The calculated diffusion energies are in agreement with observed kinetics of the surface alloy formation and confirm stability of the underlayer alloy. Activation energy of planar diffusion of palladium at the initial stage of the alloy formation as well as the activation energy of the overlayer-underlayer diffusion of the Pd atoms are in good agreement with those obtained by the scanning tunneling microscopy and low energy electron diffraction measurements, respectively.  相似文献   

8.
We have studied the growth of cerium films on Rh(1 1 1) using STM (scanning tunneling microscopy), LEED (low energy electron diffraction), XPS (X-ray photoelectron spectroscopy) and AES (Auger electron spectroscopy). Measurements of the Ce films after room temperature deposition showed that Ce is initially forming nanoclusters in the low coverage regime. These clusters consist of 12 Ce atoms and have the shape of pinwheels. At a coverage of 0.25 ML (monolayer, ML) an adatom layer with a (2 × 2) superstructure is observed. Above 0.4 ML, Rh is diffusing through pinholes into the film, forming an unstructured mixed layer. Annealing at 250 °C leads to the formation of ordered Ce-Rh compounds based on the bulk compound CeRh3. At a coverage of 0.1 ML, small ordered (2 × 2) surface alloy domains are observed. The exchanged Rh atoms form additional alloy islands situated on the pure Rh(1 1 1) surface, showing the same (2 × 2) superstructure as the surface alloy. At a coverage of 0.25 ML, the surface is completely covered by the surface alloy and alloy islands. The (2 × 2) structure is equivalent to a (1 1 1)-plane of CeRh3, contracted by 6%. Annealing a 1 ML thick Ce layer leads to a flat surface consisting of different rotational domains of CeRh3(1 0 0). The Rh needed for alloy formation comes from 50 Å deep pits in the substrate. Finally we show that LEIS (low energy ion scattering) is not suitable for the characterization of Ce and CeRh films due to strong effects of neutralization.  相似文献   

9.
Yuki Nara 《Surface science》2007,601(22):5170-5172
Geometrical structures of the Sn-adsorbed Cu(0 0 1) surfaces are studied with scanning tunneling microscopy. There are four phases in the Sn coverage range between 0.2 and 0.5 mono-atomic layer (ML). On the basis of the observed atomic images in this range, we propose structural models for the phases with 0.33 and 0.375 ML of Sn. All the phases consist of embedded Sn atoms in the Cu surface, forming two-dimensional surface alloy structures. On the surface with ∼0.4 ML of Sn, a novel one-dimensional structure is observed.  相似文献   

10.
With static relaxation, the surface diffusion activation energies of a single Cu adatom migrated by both atomic exchange and hopping mechanisms and the forces acted on the diffusing adatom from other atoms of Cu (0 0 1) or (1 1 0) surface are calculated by using the MAEAM. When adatom migrated on Cu (0 0 1) or (1 1 0) surface, the increment curves of the system energy by hopping mechanism are symmetrical and the saddle points are in the midpoints of the migration path, but the ones by the exchange mechanism are dissymmetrical and the saddle points are always close to the initial hole positions of the adatom and away from the initial equilibrium positions of the exchanged atom. From minimization of both the diffusion activation energy and the force acted on the diffusing adatom from other atoms, we found that, on Cu (0 0 1) surface the favorable diffusion mechanism is hopping mechanism, however, on Cu (1 1 0) surface, hopping via long bridge is easier than the exchange mechanism but the hopping via short bridge is more difficult than the exchange mechanism.  相似文献   

11.
I.V. Shvets  V. Kalinin 《Surface science》2007,601(15):3169-3178
The deposition of ultrathin Fe films on the Mo(1 1 0) surface at elevated temperatures results in the formation of distinctive nanowedge islands. The model of island formation presented in this work is based on both experiment and DFT calculations of Fe adatom hopping barriers. Also, a number of classical molecular dynamics simulations were carried out to illustrate fragments of the model. The islands are formed during a transition from a nanostripe morphology at around 2 ML coverage through a Bales-Zangwill type instability. Islands nucleate when the meandering step fronts are sufficiently roughened to produce a substantial overlap between adjacent steps. The islands propagate along the substrate [0 0 1] direction due to anisotropic diffusion/capture processes along the island edges. It was found that the substrate steps limit adatom diffusion and provide heterogeneous nucleation sites, resulting in a higher density of islands on a vicinal surface. As the islands can be several layers thick at their thinnest end, we propose that adatoms entering the islands undertake a so-called “vertical climb” along the sides of the island. This is facilitated by the presence of mismatch-induced dislocations that thread to the sides of the islands and produce local maxima of compressive strain. Dislocation lines also trigger initial nucleation on the surface with 2-3 ML Fe coverage. The sides of the nanowedge islands typically form along low-index crystallographic directions but can also form along dislocation lines or the substrate miscut direction.  相似文献   

12.
F. Wiame  V. Maurice  P. Marcus 《Surface science》2007,601(5):1193-1204
Several surface analysis techniques were combined to study the initial stages of oxidation of Cu(1 1 1) surfaces exposed to O2 at low pressure (<5 × 10−6 mbar) and room temperature. Scanning tunneling microscopy (STM) results show that the reactivity is governed by the restructuring of the Cu(1 1 1) surface. On the terraces, oxygen dissociative adsorption leads to the formation of isolated O adatoms and clusters weakly bound to the surface. The O adatoms are located in the fcc threefold hollow sites of the unrestructured terraces. Friedel oscillations with an amplitude lower than 5 pm have been measured around the adatoms. At step edges, surface restructuring is initiated and leads to the nucleation and growth of a two-dimensional disordered layer of oxide precursor. The electronic structure of this oxide layer is characterised by a band gap measured by scanning tunneling spectroscopy to be ∼1.5 eV wide. The growth of the oxide islands progresses by consumption of the upper metal terraces to form triangular indents. The extraction of the Cu atoms at this interface generates a preferential orientation of the interface along the close-packed directions of the metal. A second growth front corresponds to the step edges of the oxide islands and progresses above the lower metal terraces. This is where the excess Cu atoms extracted at the first growth front are incorporated. STM shows that the growing disordered oxide layer consists of units of hexagonal structure with a first nearest neighbour distance characteristic of a relaxed Cu-Cu distance (∼0.3 nm), consistent with local Cu2O(1 1 1)-like elements. Exposure at 300 °C is necessary to form an ordered two-dimensional layer of oxide precursor. It forms the so-called “29” superstructure assigned to a periodic distorted Cu2O(1 1 1)-like structure.  相似文献   

13.
In-plane elastic lattice strain on the Cu(0 0 1)-c(2 × 2)N surfaces is investigated by scanning tunneling microscopy on the surface where nitrogen-adsorbed patches with average size of 5 × 5 nm2 (c(2 × 2)N patches) are well separated by wide clean Cu surface. The lattice distortion on clean Cu surface is recognized in the vicinity of the boundary to a c(2 × 2)N patch. The positions of the protrusions observed on the c(2 × 2)N patch are compared with the surrounding undistorted (1 × 1) lattice of the clean Cu surface. Most of the protrusions on the c(2 × 2)N patches locate on the fourfold hollow sites of the undistorted Cu lattice. The lattice distortion is significant only near the boundary to the surrounding clean Cu surface.  相似文献   

14.
We report on the adsorption of nitrogen on the Cu(1 0 0) surface when using a radio-frequency plasma source to obtain atomic nitrogen. In these conditions, more than 0.5 ML of nitrogen can be adsorbed, due to N being implanted in both the surface and subsurface layers. The N adsorption modifies drastically the Cu surface, with the formation of a number of small irregular islands and dislocations. A copper nitride Cu3N thin film with a (1 0 0) texture can be grown by codepositing Cu and N at ∼100 °C.  相似文献   

15.
The formation of (1 1 1)-oriented Cu-clusters on ZnO(0 0 0 1)-Zn at room temperature is followed by in situ applied scanning tunneling microscopy. Kink-sites at step edges and especially the apexes of triangular ZnO-substrate terraces act as preferred nucleation sites. At room temperature the decay of small Cu-islands takes place on a time scale of minutes. Larger Cu-coverages lead to an ensemble of interconnected 3D-islands of uniform height separated by trenches down to the substrate. A disordered dislocation network is visible on top of the Cu-islands. Annealing leads to a piling up of the Cu-islands. An initially undisturbed ZnO-substrate in between the islands shows that there is no strong reaction between the Cu-clusters and the oxide at room temperature. A strong decrease of the adlayer coverage visible above the ZnO-substrate layer for annealing temperature above 570 K points to a partial entrenching of the islands into the oxide support and an alloy formation.  相似文献   

16.
T. Brandstetter 《Surface science》2009,603(24):3410-1029
The interplay between chemisorbed oxygen and deposited Ag on the Cu(1 1 0) surface has been studied by scanning tunneling microscopy (STM) and photoelectron emission microscopy (PEEM). The Cu-CuO stripe phase formed on the clean Cu(1 1 0) surface upon oxygen chemisorption at 660 K is partly dissolved by Ag deposition at 300 K. Upon annealing, however, a phase separation is observed, where the Cu-O compounds agglomerate into large CuO islands and the Ag is located in between. Also a strong preference for the Ag to attach to step bunches is observed. Especially on the fully (2×1)O reconstructed Cu(1 1 0) surface, all the deposited Ag is found at the step bunches giving rise to a contrast in PEEM.  相似文献   

17.
G. Prévot  B. Croset 《Surface science》2007,601(9):2017-2025
We have studied by Spot Profile Analysis Low Energy Electron Diffraction (SPA-LEED) the growth of gold particles on the N/Cu(0 0 1) self-organized surface. This template consists of nitrogen islands separated by bare Cu lines and forming a regular 2D array of period 5 nm. When Au is evaporated onto this surface, it mainly grows at the intersections between the Cu lines. The islands organization reproduces then the substrate 2D ordering.However, if the substrate temperature is too low, islands form everywhere. On the contrary, if the substrate temperature is too high, some nucleation sites are empty. By following the intensity of the diffraction satellites during the growth, we have observed that the ordering of the Au particles is optimum when the substrate temperature is between 210 and 290 K. Using both an analytical treatment based on the rate equations and kinetic Monte-Carlo simulations, we have determined the activation energy for the diffusion process and the energy of the traps.  相似文献   

18.
Morphology of high-vacuum deposited rubrene thin films on the annealed (0 0 0 1) vicinal sapphire surfaces was studied by atomic force microscopy in non-contact mode. Atomic force microscopy images of rubrene thin films indicate that a regular array of steps on the sapphire surface acts as a template for the growth of the arrays of rubrene nanosize wires. To further demonstrate that morphological features of a substrate are crucial in determining the morphology of rubrene layers we have grown rubrene on the sapphire surfaces that were characterized by the terrace-and-step morphology with islands. We have found preferential nucleation of rubrene molecules at the intersection between a terrace and a step, as well as around the islands located on terraces.  相似文献   

19.
A theoretical model is proposed to describe the rapid coarsening observed for Pb islands on a Si(1 1 1) surface where classical kinetics breaks down. In this system, quantum size effects produce mesa-like Pb islands with chemical potentials depending strongly on their heights, in addition to the usual dependence on the step curvature. Furthermore, a dense wetting layer enables fast mass transport between islands. Incorporating these features, our theoretical model predicts evolution of the island height distribution in good agreement with experiments.  相似文献   

20.
Surface diffusion of Pb and Bi over Cu(1 0 0) surfaces has been studied by scanning Auger microscopy techniques. The diffusion profiles of Pb and Bi have been found to be quite different. The results show that three major factors control the shapes of the surface diffusion profiles: (a) First order phase transitions, which lead to phase coexistence over specified coverage ranges, tend to produce abrupt changes in coverage versus distance profiles; (b) profiles can be affected by the existence of significant differences in the diffusion coefficients of the various phases present, and by the possibility (c) of important changes in diffusivity within a given phase, as a function of coverage, due to interactions between the diffusing atoms. In addition, it has been shown that the strong connection between diffusion profile shapes and the 2D phase diagram allows certain features of the 2D phase diagram to be determined from diffusion profiles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号