首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A method for selectively suppressing the signals of OH and NH protons in (1)H combined rotation and multiple-pulse spectroscopy (CRAMPS) and in (1)H-(13)C heteronuclear correlation (HETCOR) solid-state NMR spectra is presented. It permits distinction of overlapping CH and OH/NH proton signals, based on the selective dephasing of the magnetization of OH and NH protons by their relatively large (1)H chemical-shift anisotropies. For NH protons, the (14)N-(1)H dipolar coupling also contributes significantly to this dephasing. The dephasing is achieved by a new combination of heteronuclear recoupling of these anisotropies with (1)H homonuclear dipolar decoupling. Since the 180 degrees pulses traditionally used for heteronuclear dipolar and chemical-shift anisotropy recoupling would result in undesirable homonuclear dephasing of proton magnetization, instead the necessary inversion of the chemical-shift Hamiltonian every half rotation period is achieved by inverting the phases of all the pulses in the HW8 multiple-pulse sequence. In the HETCOR experiments, carefully timed (13)C 180 degrees pulses remove the strong dipolar coupling to the nearby (13)C spin. The suppression of NH and OH peaks is demonstrated on crystalline model compounds. The technique in combination with HETCOR NMR is applied to identify the CONH and NH-CH groups in chitin and to distinguish NH and aromatic proton peaks in a peat humin.  相似文献   

2.
The photosynthetic reaction center (RC) of the photosynthetic bacteriumRhodobacter sphaeroides R26 contains two quinones, QA and QB. Solid-state heteronuclear (1H?13C) dipolar correlation spectroscopy has been used to study the binding of the quinones in the ground state for RCs reconstituted with l-13C ubiquinone-10. Lee-Goldburg cross-polarization buildup curves are recorded to determine distancesr CH between the l-13C carbon labels and the protons involved in the polarization transfer. The l-13C of both QA and QB have intermolecular correlations with protons that resonate downfield, in the region of hydrogen-bonding protons. The distances between the carbon labels and the correlated protons are short, 0.21±0.01 nm. Hence the nuclear magnetic resonance provides evidence for strong hydrogen-bonding interactions at the l-C=O of both QA and QB for RCs in the ground state. The environment of the l-13C of the QB is structurally heterogeneous compared to that of the QA. The data can be reconciled with a strong H-bonding interaction of the l-C=O of QA with Ala M260 NH, and with complex hydrogen bonding involving NH of Ile-L224 and of Gly-L225, and possibly the Ser-L223 hydroxyl group of the l-C=O of the QB, in the proximal site.  相似文献   

3.
The use of mixed surfactants in the synthesis of mesoporous silica nanoparticles (MSNs) is of importance in the context of adjusting pore structures, sizes and morphologies. In the present study, the arrangement of molecules in micelles produced from a mixture of two surfactants, cetyltrimethylammonium bromide (CTAB) and cetylpyridinium bromide (CPB) was detailed by solid-state NMR spectroscopy. Proximities of methyl protons in the trimethylammonium headgroup of CTAB and protons in the pyridinium headgroup of CPB were observed under fast magic angle spinning (MAS) by (1)H-(1)H double quantum (DQ) MAS NMR and NOESY. This result suggested that CTAB and CPB co-exist in the pores without forming significant monocomponent domain structures. (1)H-(29)Si heteronuclear correlation (HETCOR) NMR showed that protons in the headgroups of CTAB are in closer proximity to the silica surface than those in the CPB headgroups. The structural information obtained in this investigation leads to better understanding of the mechanisms of self-assembly and their role in determining the structure and morphology of mesoporous materials.  相似文献   

4.
A new two-dimensional pulse sequence for T2* measurement of protons directly coupled to 13C spins is proposed. The sequence measures the tranverse relaxation time of heteronuclear proton single-quantum coherence under conditions of free precession and is therefore well suited to evaluate relaxation losses of proton magnetization during preparation delays of heteronuclear pulse experiments in analytical NMR. The relevant part of the pulse sequence can be inserted as a “building block” into any direct or inverse detecting H,C correlation pulse sequence if proton spin–spin relaxation is to be investigated. In this contribution, the building block is inserted into a HETCOR as well as into a HMQC pulse sequence. Experimental results for the HETCOR-based sequence are given.  相似文献   

5.
We present a method based on integro-differential equations describing the13C?1H dipolar dephasing behaviour of carbon magnetization which results from monoprotonated carbons, non-protonated carbons as well as rapidly rotating methyl groups. Good agreement with theoretical calculations and experiment is obtained in ammonium tartrate and durene. The frequently applied empirical methods for determination the ratio of protonated and non-protonated carbons are analyzed. The dipolar dephasing time constants of non-protonated carbons vary substantially as a result, of variation in their heteronuclear second moments and thus in structure. Two different methods are performed for determination heteronuclear second moments from dipolar dephasing data.  相似文献   

6.
A multiple-pulse technique for complete dipolar decoupling of directly bonded13C-labeled sites is described. It achieves significant spectral simplifications in a recently introduced two-dimensional double-quantum solid-state NMR experiment for determining torsion angles. Both homonuclear and heteronuclear dipolar couplings are removed by combining a13C multiple-pulse sequence with continuous-wave irradiation on the protons. The13C sequence has a fundamental 10-pulse cycle which is a significantly modified magic-sandwich-echo sequence. The crucial heteronuclear decoupling is achieved by breaking the 360° “inner” pulses in the magic sandwich into 90° pulses and spacing them by1H 360° pulse lengths. Spectral artifacts typical of multiple-pulse sequences are eliminated by phase shifts between cycles. In contrast to many other multiple-pulse decoupling sequences, the long window in the cycle is the dwell time and can be longer than the inverse dipolar coupling, which makes the sequence practical for direct detection even with long pulse ring-down times. A modification of the sequence to scale the chemical shift and increase the effective spectral width is also presented. The 1D and double-quantum 2D experiments are demonstrated on polyethylene with 4%13C–13C spin pairs. The potential of this approach for distinguishing segmental conformations is illustrated by spectral simulations of the two-dimensional ridge patterns that correlate double-quantum and single-quantum chemical-shift anisotropies.  相似文献   

7.
The dipolar interactions between the protons and the central 13C nucleus of a 13CH3 group are used to study rotational tunnelling and incoherent dynamics of such groups in molecular solids. Single-crystal 13C NMR spectra are derived for arbitrary values of the tunnel frequency νt. Similarities to ESR and 2H NMR are pointed out. The method is applied to three different materials. In the hydroquinone/acetonitrile clathrate, the unique features in the 13C NMR spectra which arise from tunnelling with a tunnel frequency that is much larger than the dipolar coupling between the methyl protons and the 13C nucleus are demonstrated, and the effects of incoherent dynamics are studied. The broadening of the 13C resonances is related to the width of the quasi-elastic line in neutron scattering. Selective magnetization transfer experiments for studying slow incoherent dynamics are proposed. For the strongly hindered methyl groups of L-alanine, an upper limit for νt is derived from the 13C NMR spectrum. In aspirin? (acetylsalicylic acid), incoherent reorientations dominate the spectra down to the lowest temperatures studied; their rate apparently increases with decreasing temperature below 25 K.  相似文献   

8.
High resolution 2D NMR MAS spectra of liposomes, in particular 1H-13C chemical shifts correlations have been obtained on fluid lipid bilayers made of pure phospholipids for several years. We have investigated herein the possibility to obtain high resolution 2D MAS spectra of cholesterol embedded in membranes, i.e. on a rigid molecule whose dynamics is characterized mainly by axial diffusion without internal segmental mobility. The efficiency of various pulse sequences for heteronuclear HETCOR has been compared in terms of resolution, sensitivity and selectivity, using either cross polarization or INEPT for coherence transfer, and with or without MREV-8 homonuclear decoupling during t1. At moderately high spinning speed (9 kHz), a similar resolution is obtained in all cases (0.2 ppm for 1H(3,4), 0.15 ppm for 13C(3,4) cholesterol resonances), while sensitivity increases in the order: INEPT < CP(x4) < CP + MREV. At reduced spinning speed (5 kHz), the homonuclear dipolar coupling between the two geminal protons attached to C(4) gives rise to spinning sidebands from which one can estimate a H-H dipolar coupling of 10 kHz which is in good agreement with the known dynamics of cholesterol in membranes.  相似文献   

9.
A new approach for high-resolution solid-state heteronuclear multiple-quantum MAS NMR spectroscopy of dipolar-coupled spin- nuclei is introduced. The method is a heteronuclear chemical shift correlation technique of abundant spins, like 1H with rare spins, like 13C in natural abundance. High resolution is provided by ultra-fast MAS and high magnetic fields, high sensitivity being ensured by a direct polarization transfer from the abundant protons to 13C. In a rotor-synchronized variant, the method can be used to probe heteronuclear through-space proximities, while the heteronuclear dipolar coupling constant can quantitatively be determined by measuring multiple-quantum spinning-sideband patterns. By means of recoupling, even weak heteronuclear dipolar interactions are accessible. The capabilities of the technique are demonstrated by measurements on crystalline -tyrosine hydrochloride salt.  相似文献   

10.
11.
A new two-dimensional pulse sequence for T(2)* measurement of protons directly coupled to (13)C spins is proposed. The sequence measures the tranverse relaxation time of heteronuclear proton single-quantum coherence under conditions of free precession and is therefore well suited to evaluate relaxation losses of proton magnetization during preparation delays of heteronuclear pulse experiments in analytical NMR. The relevant part of the pulse sequence can be inserted as a "building block" into any direct or inverse detecting H,C correlation pulse sequence if proton spin-spin relaxation is to be investigated. In this contribution, the building block is inserted into a HETCOR as well as into a HMQC pulse sequence. Experimental results for the HETCOR-based sequence are given.  相似文献   

12.
Hannu Elo 《光谱学快报》2013,46(7):877-885
The first 2D-NMR study on bis(amidinohydrazones) [‘(guanylhydrazones)’] is reported. Heteronuclear shift correlation (HETCOR) experiments were performed on the enzyme inhibitors methylpropylglyoxal bis(amidinohydrazone) (MPGBG) and butylmethylglyoxal bis(amidinohydrazone) (BMGBG). The results obtained made possible the unambiguous assignment of the previously unassigned resonances of the side-chain carbon atoms of MPGBG. The results indicate that the chemical shifts of the protons of the propyl side chain of MPGBG are positively correlated to the 13C chemical shifts of the corresponding carbon atoms. The chemical shifts of the carbon atoms of the propyl side chain decrease as a function of the position of the atom in the side chain, the terminal methyl group having the lowest shift value. These results are in full agreement with previous results on the analogous compound dipropylglyoxal bis(amidinohydra- zone), whose side-chain carbon resonances were assigned using totally different techniques. In the case of BMGBG, however, HETCOR contour plots clearly indicate that there is no correlation between the chemical shifts of the protons of the butyl side chain and the 13C chemical shifts of the corresponding carbons. Because the 200 MHz proton spectrum of BMGBG is not fist-order, only the 1 3 resonance~ of the methyl substituent and the resonances of carbons 1 and 4 (but not those of carbons 2 and 3) of the butyl side chain could be assigned on the basis of the HETCOR study. Yet, the results gave a rough estimate of the previously unknown chemical shifts of the protons bound to butyl carbon atoms 2 and 3.  相似文献   

13.
To investigate the effects of sequestration condition on hydrogen bonds between mineral and water, molecular dynamics simulations have been performed. The simulations were conducted at conditions related with geologic sequestration sites: pressure (3.1–32.6 MPa), temperature (318 and 383 K), salinity (0–3 M), salt (NaCl and CaCl2) and silica surface models Q2 (geminal), Q3 (isolated) and amorphous Q3. The hydrogen bonds were classified into four types: silica–silica, silica–dissolved CO2, silica–water as donors and silica–water as acceptors. The mean numbers of hydrogen bonds for each type were analysed. The results show that: (1) silica surface silanol groups do not form H-bonds with dissolved CO2 molecules in water (brine); (2) The mean number of hydrogen bonds between silanol groups follows the order: Q2 > amorphous Q3 > Q3; (3) The mean number of hydrogen bonds between silanol and water molecules follows the order: Q3 > amorphous Q3 > Q2.  相似文献   

14.
We demonstrate that the SPECIFIC CP technique can be used to obtain heteronuclear correlation (HETCOR) spectra of peptide backbones with greater efficiency than conventional HETCOR methods. We show that similar design principles can be employed to achieve selective homonuclear polarization transfer mediated through dipolar or scalar couplings. Both approaches are demonstrated in a tripeptide with uniform 15N and 13C labeling, and with uniform 15N labeling and natural abundance 13C. In other applications, the high efficiency of the heteronuclear SPECIFIC CP transfer allows discrimination of single amide signals in the 248-residue membrane protein bacteriorhodopsin (bR). In particular, variations are detected in the ordering of the Ala81-Arg82 peptide bond among the photocycle intermediates of bR and SPECIFIC CP is used to correlate 15N and 13C signals from the three Val-Pro peptide bonds.  相似文献   

15.
Two 3D experiments, (H)CCH3-TOCSY and H(C)CH3-TOCSY, are proposed for resonance assignment of methyl-containing amino acid side chains. After the initial proton–carbon INEPT step, during which either carbon or proton chemical shift labeling is achieved (t1), the magnetization is spread along the amino acid side chains by a carbon spin lock. The chemical shifts of methyl carbons are labeled (t2) during the following constant time interval. Finally the magnetization is transferred, in a reversed INEPT step, to methyl protons for detection (t3). The proposed experiments are characterized by high digital resolution in the methyl carbon dimension (t2max = 28.6 ms), optimum sensitivity due to the use of proton decoupling during the long constant time interval, and an optional removal of CH2, or CH2 and CH, resonances from the F2F3 planes. The building blocks used in these experiments can be implemented in a range of heteronuclear experiments focusing on methyl resonances in proteins. The techniques are illustrated using a 15N, 13C-labeled E93D mutant of Schizosacharomyces pombe phosphoglycerate mutase (23.7 kDa).  相似文献   

16.
Bulk magnetization and 1H static and magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectra of two magnetically heterogeneous model systems based on laponite (LAP) layered silicate or polystyrene (PS) with low and high proton concentration, respectively, and ferrimagnetic Fe2O3 nano- or micro-particles have been studied. In LAP+Fe2O3, a major contribution to the NMR signal broadening is due to the dipolar coupling between the magnetic moments of protons and magnetic particles. In PS+Fe2O3, due to the higher proton concentration in polystyrene and stronger proton–proton dipolar coupling, an additional broadening is observed, i.e. 1H MAS NMR spectra of magnetically heterogeneous systems are sensitive to both proton–magnetic particles and proton–proton dipolar couplings. An increase of the volume magnetization by ~1 emu/cm3 affects the 1H NMR signal width in a way that is similar to an increase of the proton concentration by ~2×1022/cm3. 1H MAS NMR spectra, along with bulk magnetization measurements, allow the accurate determination of the hydrogen concentration in magnetically heterogeneous systems.  相似文献   

17.
One-bond heteronuclear and two-bond homonuclear residual dipolar couplings measured at methylene or amine sites can be utilized as long-range constraints in structure determination of molecules as well as to facilitate characterization of local conformation by stereospecific assignment of diastereotopic protons. We present two J-modulated HMQC type experiments to measure the one-bond heteronuclear dipolar coupling contributions of geminal protons individually. In addition two-bond homonuclear residual dipolar couplings between the diastereotopic protons are also obtained.  相似文献   

18.
An in-depth account of the effects of homonuclear couplings and multiple heteronuclear couplings is given for a recently published technique for 1H–13C dipolar correlation in solids under very fast MAS, where the heteronuclear dipolar coupling is recoupled by means of REDOR π-pulse trains. The method bears similarities to well-known solution-state NMR techniques, which form the framework of a heteronuclear multiple-quantum experiment. The so-called recoupled polarization-transfer (REPT) technique is versatile in that rotor-synchronized 1H–13C shift correlation spectra can be recorded. In addition, weak heteronuclear dipolar coupling constants can be extracted by means of spinning sideband analysis in the indirect dimension of the experiment. These sidebands are generated by rotor encoding of the reconversion Hamiltonian. We present generalized variants of the initially described heteronuclear multiple-quantum correlation (HMQC) experiment, which are better suited for certain applications. Using these techniques, measurements on model compounds with 13C in natural abundance, as well as simulations, confirm the very weak effect of 1H–1H homonuclear couplings on the spectra recorded with spinning frequencies of 25–30 kHz. The effect of remote heteronuclear couplings on the spinning-sideband patterns of CHn groups is discussed, and 13C spectral editing of rigid organic solids is shown to be practicable with these techniques.  相似文献   

19.
随着固体NMR理论和谱仪硬件技术的不断发展,近年来固体NMR技术在高分子多尺度结构与动力学研究领域中正发挥着越来越重要的作用. 多脉冲及高速魔角旋转(MAS)等质子高分辨技术的发展使得高灵敏度的1H谱可有效地用于高分子化学结构与链间相互作用的检测;基于化学键(J-耦合)相关和通过空间(偶极耦合)相互作用的各种二维异核相关谱NMR新技术,使得复杂高分子的链结构得以严格解析. 基于MAS下同核和异核偶极-偶极相互作用、化学位移各向异性等各向异性相互作用重聚的系列新技术,使得研究者可在采用高分辨1H或13C 检测信号的同时检测准静态下的各向异性相互作用,进而获得与之密切相关的结构和动力学信息. 通过质子偶极滤波技术可有效检测多相聚合物中的界面相与相区尺寸、高分子共混物中的相容性等问题. 在动力学的研究中,通过质子间自旋扩散的有效压制技术和化学位移各向异性的重聚,目前已经可以有效地获取链段上单个化学键的快速局域运动以及链段的超慢分子运动. 上述丰富的多尺度NMR技术可以使研究者在不同空间和时间尺度上对高分子聚合物的微观结构、相分离和动力学行为等进行详细的研究,进而阐明高分子微观结构与宏观性能的关联. 该文以固体NMR中最主要的2类核(1H和13C)的检测技术为主线,简单介绍近年来固体NMR领域的一些最新研究进展及其在高分子结构和动力学研究中的应用.  相似文献   

20.
The nature of the interaction between trifluoromethanesulfonic acid (triflic acid) and the surface groups of silica as a support has been investigated by1H and19F-NMR studies. The19F-NMR spin-lattice relaxation time (T 1) dependence on temperature suggests that the dominant relaxation mechanism for19F is a combination of spin-rotation (SR) interactions, one of which seems to be quenched by cage-like structures. This mechanism is activated by the treatment followed to stabilize the acid on silica. Hydrogen proton relaxation seems instead to be driven by dipolar interactions and the formation of hydrogen bridges. Activation energies have been estimated for various cases, assuming an Arrhenius-type temperature dependence for the correlation times of molecular motion. A linear dependence of1H chemical shift on inverse temperature was also found, which is interpreted as thermal weakening of hydrogen bonding. The results support the conclusion that the stability of triflic acid on silica is due to the formation of strong hydrogen bridges between the sulfonic groups of triflic acid and the silica surface hydroxyls, provided a network structure similar to that observed for pure acid is obtained in which strong interactions between acid molecules occur. The acid seems to be organized as solid-like “drops” on the silica surface, which accounts for the long residence time on the silica surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号