首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Non-wettable surfaces with high contact angles and facile sliding angle of water droplets have received tremendous attention in recent years. The present paper describes the room temperature (∼27 °C) synthesis of dip coated water repellent silica coatings on glass substrates using iso-butyltrimethoxysilane (iso-BTMS) as a co-precursor. Emphasis is given to the influence of the hydrophobic reagent (iso-BTMS) on the water repellent properties of the silica films. Silica sol was prepared by keeping the molar ratio of tetraethoxysilane (TEOS) precursor, methanol (MeOH) solvent, water (H2O) constant at 1:16.53:8.26 respectively, with 0.01 M NH4F throughout the experiment and the molar ratio of iso-BTMS/TEOS (M) was varied from 0 to 0.965. The effect of M on the surface structure and hydrophobicity has been researched. The static water contact angle values of the silica films increased from 65° to 140° and water sliding angle values decreased from 42° to 16° with an increase in the M value from 0 to 0.965. The water repellent silica films are thermally stable up to a temperature of 280 °C and above this temperature the film shows hydrophilic behavior. The water repellent silica films were characterized by the Fourier Transform Infrared (FT-IR) Spectroscopy, Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), % of optical transmission, thermal and chemical aging tests, humidity tests, static and dynamic water contact angle measurements.  相似文献   

2.
Na-doped ZnO thin films with different Na/Zn ratio were prepared by sol-gel method. The microstructure, chemical composition, surface morphology, and wettability of the thin films were investigated by X-ray diffraction, X-ray photoelectron spectroscopy (XPS), scanning electron microscopy, and water contact angle apparatus. The relation of wettability and Na/Zn ratio has been studied in detail. The wetting behavior of the thin films can be reversibly switched from hydrophobic to hydrophilic, through alternation of UV illumination and dark storage (or thermal treatment). Photo-induced hydrophilicity of the thin films increases with increasing Na/Zn ratio up to 0.08 and then decreases. The mechanism can be attributed to surface nanostructure and the concentration of Na doping.  相似文献   

3.
Static and dynamic hydrophobicities of water droplet on a patterned surface prepared using fluoroalkylsilanes with different molecular chain lengths were investigated. Contact angles on the patterned surfaces well agreed with values predicted using Cassie’s theory. On the same line width ratio, total retention force was governed by the fluoroalkylsilane with slow-sliding acceleration. The total retention force decreased with the decreasing width ratio of silane with slow-sliding acceleration on the surface. These results imply that the sliding acceleration of water droplets on a hydrophobic surface depends both on chemical composition and patterning structure.  相似文献   

4.
Recent studies show that the self-assembled monolayer (SAM) is well suited to control the selectivity of chemical vapor deposition (CVD). Here, we reported the selective CVD for copper on the functionalized SAM surfaces (with -SH, -SS-, and -SO3H terminal groups). The -SS- and -SO3H terminal group surfaces were obtained through in situ chemical transformation of -SH terminal group surface of a 3-mercaptopropyltrimethoxysilane-SAM (MPTMS-SAM). As a result, the -SS- terminal group surface reduces copper deposition and the -SO3H terminal group surface enhances copper deposition comparing to the -SH terminal group surface. In addition, the MPTMS-SAM was irradiated by UV-light through a photo mask to prepare SH-group and OH-group regions. Then, copper films were deposited only on the SH-group region of the substrate in chemical vapor deposition. Finally, patterns of copper films were formed in the way of UV-light irradiation. These results are expected for use of selective deposition of copper metallization patterns in IC manufacturing processes.  相似文献   

5.
非晶态合金表面的水润湿动力学   总被引:1,自引:0,他引:1       下载免费PDF全文
孙川琴  黄海深  毕庆玲  吕勇军 《物理学报》2017,66(17):176101-176101
采用分子动力学模拟方法研究了改进的Simple pointcharge模型SPC/E水滴在Cu_(50)Zr_(50)非晶薄膜上的润湿行为和铺展过程.通过与CuZr(110)和(100)晶面对比研究发现,水滴在Cu_(50)Zr_(50)非晶薄膜表面上表现出较高的铺展速度.水滴在非晶合金表面的铺展过程中形成了明显的吸附层;而在晶态表面,水滴铺展前沿呈脚状形态.分析结果表明非晶表面的水分子在吸附层内呈现完全无序的单层排列方式,而在晶态表面,特别是(100)晶面,吸附层水分子呈双层有序排列.这种吸附层结构的差异导致了吸附层内水分子方向的差异:非晶表面吸附层内水分子方向倾向平行于表面,而晶态基底上吸附层内的水分子倾向于指向液滴内部.由此造成了非晶表面吸附层中的水分子与液滴内部以相对较弱的氢键相互作用,这使得上层水分子能够较容易扩散至吸附层前沿,促进液滴铺展.  相似文献   

6.
The impact dynamics of water droplets on an artificial dual-scaled superhydrophobic surface was studied and compared with that of a lotus leaf with impact velocity V up to 3 m/s. The lower critical impact velocity for the bouncing of droplets was about 0.08 m/s on both surfaces. At relatively low impact velocities, regular rebound of droplets and air bubble trapping and flow jetting on both surfaces were observed as V was increased. For intermediate V, partial pinning and rebound of droplets were found on the artificial dual-scaled surface due to the penetration of the droplets into the micro- and nano-scale roughness. On the lotus leaf, however, the droplets bounced off with intensive vibrations instead of being partially pinned on the surface because of the irregular distribution of microbumps on the leaf. As the impact velocity was sufficiently high, droplet splashing occurred on both surfaces. The contact time and restitution coefficient of the impinging droplets were also measured and discussed.  相似文献   

7.
本文以硅烷(SiH4)为反应气体,利用等离子体化学气相沉积(PECVD)方法在硅(100)衬底上生长硅纳米晶体、纳米线。应用扫描电镜观察不同条件下生长的样品表面,发现衬底条件对硅纳米结构的影响十分显著。在温度、压强等其它条件相同的情况下,对硅衬底应用Fe^3+催化剂处理后,呈纳米线状结构生长,而无Fe催化剂涂覆情况下,基本呈纳米晶体状生长,说明催化剂对si纳米线的生成起了重要的促进生长作用。通过进一步研究硅纳米晶体、纳米线的等离子增强化学气相生长机理,发现它们以气-液-固(VLS)机制生长。  相似文献   

8.
Superhydrophobic films of poly(furfuryl alcohol)/multi-walled carbon nanotubes (PFA/MWNTs) composites have been obtained by using fluorocarbon-modified MWNTs (MWNT-OOCC7F15), PFA, and PTFE with a simple preparation method. The prepared films showed both high contact angle and small sliding angle for water droplets. The chemical compositions and microstructures of the resultant film surfaces were also investigated by means of infrared spectroscopy, X-ray photoelectron spectroscopy, and field emission scanning electron microscope, respectively. Both the formed multiscale roughness structures and the lower surface energy play an important role in creating the superhydrophobic surfaces of PFA/MWNTs composites.  相似文献   

9.
Flat cellulose films were prepared and morphologically modified by spin coating a cellulose/N-methylmorpholine-N-oxide/H2O solution onto silicon oxide substrates pre-coated with a cationic polyelectrolyte. Spin-coated cellulose films were allowed to stably form on the silicon oxide substrates by pretreatment with either polydiallyldimethylammonium chloride (PDADMAC) or polyvinylamine (PVAm). The film surfaces obtained were analyzed by X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). AFM topographical images of the cellulose film surfaces showed a different morphology depending on the underlying polymer, where PVAm pretreatment brought about an anisotropic surface topology. These results suggest that the specific attraction acting at the cellulose/polymer interface influences both the film formation and surface morphology of the cellulose layer. Differences in the solvent used to precipitate cellulose caused variations in the surface roughness by affecting the cellulose separation behavior. The morphological features of spin-coated cellulose film surfaces could be altered to some extent by these film preparation techniques.  相似文献   

10.
Yu-Tian Shen 《中国物理 B》2022,31(5):56801-056801
Interactions between water and solid substrates are of fundamental importance to various processes in nature and industry. Electric control is widely used to modify interfacial water, where the influence of surface charges is inevitable. Here we obtain positively and negatively charged surfaces using LiTaO3 crystals and observe that a large net surface charge up to 0.1 C/m2 can nominally change the contact angles of pure water droplets comparing to the same uncharged surface. However, even a small amount of surface charge can efficiently increase the water contact angle in the presence of aerosols. Our results indicate that such surface charges can hardly affect the structure of interfacial water molecular layers and the morphology of the macroscopic droplet, while adsorption of a small amount of organic contaminants from aerosols with the help of Coulomb attraction can notably decrease the wettability of solid surface. Our results not only provide a fundamental understanding of the interactions between charged surfaces and water, but also help to develop new techniques on electric control of wettability and microfluidics in real aerosol environments.  相似文献   

11.
A novel approach was investigated to obtain the superhydrophobicity on surfaces of boron nitride films. In this method boron nitride films were deposited firstly on Si(1 0 0) and quartz substrate using a radio frequency (RF) magnetron sputtering system, and then using CF4 plasma treatment, the topmost surface area can be modified systematically. The results have shown that the water contact angle on such surfaces can be tuned from 67° to 159°. The films were observed to be uniform. The surfaces of films consist of micro-features, which were confirmed by Atomic Force Micrograph. The chemical bond states of the films were determined by Fourier Transform Infrared (FTIR) Spectroscopy, which indicate the dominance of B-N binding. According to the X-ray Photoelectron Spectroscopy analysis, the surface of film is mainly in BN phase. The micro-feature induced surface roughness is responsible for the observed superhydrophobic nature. The water contact angles measured on these surfaces can be modeled by the Cassie's formulation.  相似文献   

12.
《Current Applied Physics》2009,9(5):1032-1037
In the present work, TiO2 films deposited on polyethylene terephthalate substrates by dip coating technique were subsequently treated by DC glow discharge plasma as a function of discharge potential. Hydrophilicity of these TiO2 film surfaces was analyzed by contact angle measurements. Atomic force microscopy (AFM) revealed changes in surface morphology of the plasma treated TiO2 films. Modifications in structural and chemical composition of the TiO2 films were detected by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The blood compatibility of TiO2 films was studied by in vitro investigation which includes thrombus formation and whole blood clotting time analysis (WBCT). It was found that the plasma treatment results in blood compatibility enhancement attributed to the structural, chemical and morphological properties of the modified film surfaces.  相似文献   

13.
In this study, we examined the nanoscratch behavior of annealed multilayered silicon-germanium (SiGe) films comprising alternating sublayers (Si) deposited using an ultrahigh-vacuum chemical vapor deposition (UHV/CVD) system. Annealing consisted of ex situ thermal treatment in a furnace system. We used a nanoscratch technique to investigate the nanotribological behavior of the SiGe films and atomic force microscopy (AFM) to observe deformation phenomena. Our AFM morphological studies of the SiGe films revealed that pile-up phenomena occurred on both sides of each scratch. The scratched surfaces of the SiGe films that had been subjected to various annealing conditions exhibited significantly different features, it is conjectured that cracking dominates in the case of SiGe films while ploughing dominates during the scratching process. We obtained higher coefficients of friction (μ) when the ramped force was set at 6000 μN, rather than 2000 μN, suggesting that annealing of SiGe films leads to higher shear resistance; annealing treatment not only produced misfit dislocations in the form of a significantly wavy sliding surface but also promoted scratching resistance.  相似文献   

14.
Acoustic levitation is a distinctive and versatile tool for levitating and processing free-standing single droplets and particles. Liquid droplets suspended in an acoustic standing wave provide container-free environments for understanding chemical reactions by avoiding boundary effects and solid surfaces. We attempted to use this strategy for the production of well-dispersed uniform catalytic nanomaterials in an ultraclean confined area without the addition of external reducing agents or surfactants. In this study, we report on the synthesis of gold and silver nanoparticles (NPs) via acoustic levitation coupled with pulsed laser irradiation (PLI). In situ UV–Visible and Raman spectroscopic techniques were performed to monitor the formation and growth of gold and silver NPs. The PLI was used for the photoreduction of targeted metal ions present in the levitated droplets to generate metal NPs. Additionally, the cavitation effect and bubble movement accelerate the nucleation and decrease the size of NPs. The synthesized Au NPs with ∼ 5 nm size showed excellent catalytic behavior towards the conversion of 4-nitrophenol to 4-aminophenol. This study may open a new door for synthesizing various functional nanocatalysts and for achieving new chemical reactions in suspended droplets.  相似文献   

15.
Gold nanoparticles were prepared by two different methods. The first method was chemically grafting the particles with different lengths of alkylthiol (C6SH, C12SH and C18SH). For the second method, the Au particles were surface modified first by mercaptosuccinic acid (MSA) to render a surface with carboxylic acid groups which play a role to physically adsorb cationic surfactant in chloroform. This method was termed physical/chemical method. In the first method, the effects of alkyl chain length and dispersion solvent on the monolayer behavior of surface modified gold nanoparticles was evaluated. The gold nanoparticles prepared by 1-hexanthiol demonstrated the narrowest size distribution. Most of them showed narrower particle size distributions in chloroform than in hexane. For the physical/chemical method, the particles can spread more uniformly on the water surface which is attributed to the amphiphilic character of the particles at the air/water interface. However, the particles cannot pack closely due to the relatively weak particle-particle interaction. The effect of alkyl chain length was also assessed for the second method.  相似文献   

16.
《Surface science》1993,291(3):L751-L755
We report the application of the “epioptic” technique of optical second harmonic generation (SHG) to the study of surface chemical processes occurring at the technologically important (001) surfaces of the non-centrosymmetric compound semiconductor GaAs. SHG has been used to monitor the thermal removal of surface contamination from an GaAs(001) substrate mounted in a conventional molecular beam epitaxy (MBE) chamber. Rotational anisotropy plots of the reflected SH signal recorded at near-normal incidence indicate that the oxide layer is not fully disordered and possesses some structural anisotropy, i.e. some preferred net surface orientation. In addition the rotational anisotropy plots were observed to change in both intensity and apparent phase between the oxide-covered surface and the clean reconstructed surfaces. Following heating to 850 K under the background As2 flux present in the chamber, the SH signal from the clean, reconstructed surface was approximately 5 × weaker than that observed for the contaminated surface and was subsequently found to be insensitive to the reconstruction change between the (2 × 4) and c(4 × 4) surfaces, in agreement with theoretical predictions for surfaces having 2mm and 4mm symmetry, respectively.These data are discussed in terms of the difficulties encountered when attempting to observe a surface SH response from a non-centrosymmetric substrate. The sensitivity of the technique towards the thin oxide overlayer suggests that for overlayers which are likely to possess net oriented in-plane dipoles due to the structural mismatch with the substrate, an SH response may be observed in preference to a bulk response when a normal incidence geometry is employed.  相似文献   

17.
Control on the wettability of solid materials by liquid is a classical and key issue in surface engineering. Optically transparent water-repellent silica films have been spin-deposited on glass substrates at room temperature (∼27 °C). The wetting behavior of silica films was controlled by surface silylation method using dimethylchlorosilane (DMCS) as a silylating reagent. A coating sol was prepared by keeping the molar ratio of methyltrimethoxysilane (MTMS) precursor, methanol (MeOH) solvent, water (H2O) constant at 1:8.8:2.64 respectively, with 4 M NH4OH as a catalyst throughout the experiments and the amount of DMCS in hexane was varied from 0 to 12 vol.%. It was found that with an increase in vol.% of DMCS, the water contact angle values of the films increased from 78° to 136°. At 12 vol.% of DMCS, the film shows static water contact angle as high as 136° and water sliding angle as low as 18°. The hydrophobic silica films retained their water repellency up to a temperature 295 °C and above this temperature the films show superhydrophilic behavior. These results are compared with our earlier research work done on silylation of silica surface using hexamethyldisilazane (HMDZ) and trimethylchlorosilane (TMCS). The hydrophobic silica films were characterized by taking into consideration the Fourier transform infrared (FT-IR) spectroscopy, thermo gravimetric-differential thermal (TG-DT) analyses, scanning electron microscopy (SEM), atomic force microscopy (AFM), % of optical transmission, thermal and chemical aging tests, humidity tests, static and dynamic water contact angle measurements.  相似文献   

18.
We have investigated experimentally the process of a droplet impact on a regular micro-grooved surface. The target surfaces are patterned such that micro-scale spokes radiate from the center, concentric circles, and parallel lines on the polishing copper plate, using Quasi-LIGA molding technology. The dynamic behavior of water droplets impacting on these structured surfaces is examined using a high-speed camera, including the drop impact processes, the maximum spreading diameters, and the lengths and numbers of fingers at different values of Weber number. Experimental results validate that the spreading processes are arrested on all target surfaces at low velocity. Also, the experimental results at higher impact velocity demonstrate that the spreading process is conducted on the surface parallel to the micro-grooves, but is arrested in the direction perpendicular to the micro-grooves. Besides, the lengths of fingers increase observably, even when they are ejected out as tiny droplets along the groove direction, at the same time the drop recoil velocity is reduced by micro-grooves which are parallel to the spreading direction, but not by micro-grooves which are vertical to the spreading direction.  相似文献   

19.
Tetrafluoroethylene–hexafluoropropylene copolymer (FEP) films were treated with titanium-tetrachloride vapor in a molecular-layer deposition process. As a result of the surface treatment, significant improvements of the thermal and temporal charge stability were observed. Charge-decay measurements revealed enhancements of the half-value temperatures and the relaxation times of positively charged FEP electrets by at least 120 °C and two orders of magnitude, respectively. Beyond previous publications on fluoropolymer electrets with surface modification, we here report enhanced charge stabilities of the FEP films charged in negative as well as in positive corona discharges. Even though the improvement for negatively charged FEP films is moderate (half-value temperature about 20 °C higher), our experiments show that the asymmetry in positive and negative charge stability that is typical for FEP electrets can be overcome by means of chemical surface treatments. The results are discussed in the context of the formation of modified surface layers with enhanced charge-trapping properties.  相似文献   

20.
Sliding behavior of water droplets on line-patterned hydrophobic surfaces   总被引:1,自引:0,他引:1  
We prepared line-patterned hydrophobic surfaces using fluoroalkylsilane (FAS) and octadecyltrimethoxysilane (ODS) then investigated the effect of line direction on sliding behavior of water droplets by direct observation of the actual droplet motion during sliding. Water droplets slide down with a periodic large deformation of the contact line and sliding velocity fluctuation that occurred when they crossed over the 500-μm ODS line regions in FAS regions on a Si surface tilted at 35°. These behaviors are less marked for motion on a 100-μm line surface, or on lines oriented parallel to the slope direction. Smaller droplets slide down with greater displacement in the line direction on 500-μm line patterning when the lines were rotated at 13° in-plane for the slope direction. This sliding behavior depended on the droplet size and rotation angle, and is accountable by the balance between gravitational and retentive forces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号