首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Buffer layers composed of weakly bound atoms or molecules on solid surfaces are discussed as a versatile platform for size controlled growth of nano-clusters and for patterning of thin metallic films. Metallic nano-crystals can be prepared and their size and density be controlled by varying the film thickness. Cold metallic or oxide clusters, softly land and deposit on solid substrates via the Buffer Layer Assisted Growth (BLAG) method. Their final structure, therefore, reflects purely the interaction with the substrate with no kinetic constraints that may play a role in direct deposition methods of hot atoms. The nature of the buffer film, being a rare gas or a molecular film, can somewhat affect the shape of clusters as well. Applying laser ablation techniques, these weakly bound films were demonstrated to assist in patterning of metallic films. It operates on practically any cold, flat solid substrate that absorbs the laser light. Parallel stripes at sub-micron width, millimeter long, were obtained experimentally, with line width determined by the ablating laser power. The versatility of these weakly bound films in manipulating the structure of metallic particles and thin films is discussed in its wider potential scope.  相似文献   

2.
The applicability of laser processing for small-lot micro-electromechanical system devices is discussed in this paper. This simple process could replace conventional complex processes designed with mass production in mind. Ablation, protrusions or surface modification is revealed to occur by argon ion laser scanning into silicon. Which of them occurs depends on the laser power. It is found that the protrusions are covered by a thin layer of oxide; however, oxidation of the modified surface is not established even though some results suggest it. Surface modification is more applicable to surface patterning than coarse protrusion is because the laser-modified surface can be used as a mask in KOH etching to make sharp patterns. The applicability of this method is indicated by demonstrating pattern width control, patterning over a large area and the fabrication of a 16-bit linear scale.  相似文献   

3.
High speed patterning of a 30 nm thick Aluminium thin film on a flexible Polyethylene Terephthalate substrate was demonstrated with the aid of Computer Generated Holograms (CGH׳s) applied to a phase only Spatial Light Modulator. Low fluence picosecond laser pulses minimise thermal damage to the sensitive substrate and thus clean, single and multi-beam, front side thin film removal is achieved with good edge quality. Interestingly, rear side ablation shows significant Al film delamination. Measured front and rear side ablation thresholds were Fth=0.20±0.01 J cm−2 and Fth=0.15±0.01 J cm−2 respectively. With laser repetition rate of 200 kHz and 8 diffractive spots, a film removal rate of R>0.5 cm2 s−1 was demonstrated during patterning with a fixed CGH and 5 W average laser power. The effective laser repetition rate was feff~1.3 MHz. The application of 30 stored CGH׳s switching up to 10 Hz was also synchronised with motion control, allowing dynamic large area multi-beam patterning which however, slows micro-fabrication.  相似文献   

4.
Growth of metallic nano-clusters and control over their size are critically important for catalysis. Development of film patterning procedures at the nanometer scale has significant impact on future lithography. In this work, we present an approach to grow metallic nano-clusters and control their size using a weakly bound buffer layer as an intermediate substance and a template to control the clusters size at the range 1-15 nm.The buffer layer was further employed to create a pattern based on a selective laser ablation procedure. A thicker metallic film deposited on top of pre-patterned buffer layer has been demonstrated as a novel patterning technique at the sub-micron to nanometer scale employing a single laser pulse. The thermal stability of metallic structures prepared this way has been studied at temperature up to 1000 K.  相似文献   

5.
Film thickness is not only a crucial parameter in producing processes, such as semiconductor and optics production, but also a monitored variable in chemistry and biology, for example for tissue microscopy. Many working principles have been demonstrated and are in use in different fields due to their different limitations (observation film thickness, accuracy, measurement speed, etc.). One of these working principles is thin film reflectometry (TFR). One method is based on a laser source and monitors the reflected intensity over growing film time. Another one employs a spectrally broad light source and measures the reflected intensity using a spectrometer. We introduce and demonstrate a measurement system based on a tunable laser stage. There are several different setups for laser wavelength tuning. One of the most promising solutions is based on monolithic laser diodes. Rapid tuning of the lasers wavelength is crucial for achieving high measurement rates. Monolithic laser diodes offer highest tuning rates and hence high performance. On the other hand, mechanically tunable lasers show broadband spectra that result in higher thickness accuracy in this particular application. Hence, we show a comparison of thin film measurements with a monolithic and a mechanically tunable laser source. This comparison shows that the measurement accuracy of the monolithic laser diode can compete with mechanical tuning. Furthermore, it is a promising approach when measurement tuning speed is an issue.  相似文献   

6.
We report that one-dimensional (1D) and two-dimensional (2D) metal thin film gratings can be directly fabricated by interfering Nd-YAG pulsed laser beams (wavelength = 1064 nm, pulse width = 6 ns) incident from the backside of glass substrate. This process utilizes a laser-induced thermo-elastic force which plays a role to detach the film from the substrate. Micro-scale Au transmission gratings with a minimum feature size of 1 μm could be generated by interference-driven periodic detachment. The fabrication of tube-structured patterns as well as stripes was also possible by adjusting the pulse power and this is explained with the effect of film cohesion.  相似文献   

7.
Laser micromachining on 1000 nm-thick gold film using femtosecond laser has been studied. The laser pulses that are used for this study are 400 nm in central wavelength, 150 fs in pulse duration, and the repetition rate is 1 kHz. Plano-concave lens with a focal length of 19 mm focuses the laser beam into a spot of 3 μm (1/e2 diameter). The sample was translated at a linear speed of 400 μm/s during machining. Grooves were cut on gold thin film with laser pulses of various energies. The ablation depths were measured and plotted. There are two ablation regimes. In the first regime, the cutting is very shallow and the edges are free of molten material. While in the second regime, molten material appears and the cutting edges are contaminated. The results suggest that clean and precise microstructuring can be achieved with femtosecond pulsed laser by controlling the pulse energy in the first ablation regime.  相似文献   

8.
Metal thin film ablation with femtosecond pulsed laser   总被引:2,自引:0,他引:2  
Micromachining thin metal films coated on glass are widely used to repair semiconductor masks and to fabricate optoelectrical and MEMS devices. The interaction of lasers and materials must be understood in order to achieve efficient micromachining. This work investigates the morphology of thin metal films after machining with femtosecond laser ablation using about 1 μm diameter laser beam. The effect of the film thickness on the results is analyzed by comparing experimental images with data obtained using a two-temperature heat transfer model. The experiment was conducted using a high numerical aperture objective lens and a temporal pulse width of 220 fs on 200- and 500-nm-thick chromium films. The resulting surface morphology after machining was due to the thermal incubation effect, low thermal diffusivity of the glass substrate, and thermodynamic flow of the metal induced by volumetric evaporation. A Fraunhofer diffraction pattern was found in the 500-nm-thick film, and a ripple parallel to the direction of the laser light was observed after a few multiple laser shots. These results are useful for applications requiring micro- or nano-sized machining.  相似文献   

9.
Laser interference patterning (also known as “laser interference metallurgy”) is used to locally tailor the microstructure of oxide (Pd0.25Pt0.75Ox) and nitride (Cu3N) thin films to induce a chemical decomposition, which is responsible for a decrease of electrical resistivity. This technique allows hereby a laser-induced chemical decomposition of as-deposited oxide and nitride films, resulting locally in a porous microstructure due to the simultaneous emission of gaseous nitrogen and oxygen. The process locally generates at the nanometer scale metal precipitatation of Pt or Cu in the oxide or nitride matrix. Thus, isolated metallic clusters with low resistivity coexist with a high resistivity phase, establishing a preferential electrical conduction path and giving the system a lower effective resistivity. The decomposition process is investigated by four-point probe method, X-ray diffraction, spectrophotometry, white light interference, scanning and transmission electron microscopies.  相似文献   

10.
The two-dimensional Laplace integral transform technique has been applied to get the spatial and temporal temperature distributions in both the molten layer thickness of a thin film coated on a substrate, the still solid part of the thin film of the target and the temperature distribution in the substrate. Also a formula for the time dependence of the evaporated part of the thin film of the target as well as the molten layer thickness of the thin film were obtained. Calculations of the obtained relations were carried out during the irradiation with a pulsed laser. The derivation has taken into account the temperature-dependent absorption coefficient of the irradiated surface and the chemical reaction in the vapor of the thin film. As an illustrative example, computations were carried out on an aluminum thin film coated on a glass substrate.  相似文献   

11.
The ability to machine very small features in a material has a wide range of applications in industry. We ablated holes into thin film of 100 nm thickness made from various metals by femtosecond pulsed laser ablation. Using a Ti:Sapphire laser which supplies a laser pulse of 150 fs duration at central spectrum wavelength of 400 nm, we have produced a series sub-micron holes, whose diameters are less than 200 nm with a focused laser spot of 1.7 μm. We found that the material damage threshold has a great influence on the quality of the produced features. Experimental results shows that the heat-affected zone and the degree of being affected reduce with the increase of threshold value.  相似文献   

12.
High speed laser patterning of indium tin oxide thin films on glass is part of the production method used to produce transparent conductive electrodes for plasma display panels. Such a design consists of rows of repeating electrode structures which cover the active area of the display. Whilst the patterning process for such electrode structures exceeds the industrial acceptance criteria there are certain features that are yet to be fully understood. The visible line that occurs in-between two adjacent laser processed areas, commonly known as a stitch line, is one such feature. Previously published research claimed that the stitch line was caused by incomplete removal of the thin film however experimental results presented within this paper demonstrate that this cannot be the case and show that the stitch line is formed by redeposition of the plume of ablated material within the area of overlap with the previous pulse, and that heating of the sample by the second pulse plays a key role in stitch line formation.  相似文献   

13.
A gold thin film was machined by laser ablation using a femtosecond laser with mask patterns in the shape of lines and numbers. The patterns were successfully transferred with proper focusing and laser fluence. The optimal femtosecond laser fluence to keep the line width was about 5.2 mJ/cm2 on the mask, and 99 mJ/cm2 on the film. The processing resolution was 13 μm, and the narrowest line width was about 4 μm.  相似文献   

14.
肖迪  王东明  李珣  李强  沈凯  王德钊  吴玲玲  王德亮 《物理学报》2017,66(11):117301-117301
采用电子束蒸发法制备了NiO薄膜,并对其作为碲化镉薄膜太阳电池背接触缓冲层材料进行了相关研究.NiO缓冲层的加入使得碲化镉太阳电池开路电压显著增大.通过X射线光电子能谱测试得到的NiO/CdTe界面能带图表明NiO和CdTe的能带匹配度很好.NiO是宽禁带P型半导体材料,在电池背接触处形成背场,减少了电子在背表面处的复合,从而提高电池开路电压.通过优化NiO薄膜厚度,制备得到转换效率为12.2%、开路电压为789 mV的碲化镉太阳电池.研究证实NiO是用来制备高转换效率、高稳定性碲化镉薄膜太阳电池的一种极有前景的缓冲层材料.  相似文献   

15.
Laser induced reverse transfer (LIRT) has been executed first time using a Mega Hertz pulse frequency femtosecond laser radiation under ambient conditions. Research has been conducted to understand the evolution of deposited structures with regard to pulse energy. Solid deposition of gold could be deposited on quartz substrate only if pulse energy falls within a certain range. For the experiment conducted in this work, it is 36-40 nJ. For energies above this range, crests appear in the middle of the deposition. There is a threshold in maximum applicable pulse energy, 82 nJ in this exepriment, beyond which further increase in pulse energy results in only traces of deposited material. Results also show that the width of deposited line increases with the increase in pulse energy and decreases with the increase in scan speed. These observations have been explained using the dynamics of ablated plume.  相似文献   

16.
YbF3沉积速率对红外激光薄膜表面缺陷的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
 在介绍了薄膜缺陷的特点及成因的基础上,分析了YbF3沉积速率对红外激光薄膜表面缺陷密度的影响,得出了镀制激光薄膜所需的合适速率。结果表明:薄膜表面缺陷主要以节瘤缺陷与陷穴缺陷为主,其缺陷密度随YbF3沉积速率的减小基本表现为减小的趋势,当ZnS沉积速率约为0.2 nm/s,YbF3沉积速率约为0.4 nm/s时,可得到比较满意的激光薄膜,薄膜表面缺陷密度仅为0.000 675。  相似文献   

17.
A ZnO buffer layer and ZnO thin film have been deposited by the pulsed laser deposition technique at the temperatures of 200 C and 400 C, respectively. Structural, electrical and optical properties of ZnO thin films grown on sapphire (Al2O3) substrate with 1, 5, and 9 nm thick ZnO buffer layers were investigated. A minute shift of the (101) peak was observed which indicates that the lattice parameter was changed by varying the thickness of the buffer layer. High resolution transmission electron microscopy (TEM) was used to investigate the thickness of the ZnO buffer layer and the interface involving a thin ZnO buffer between the film and substrate. Selected area electron diffraction (SAED) patterns show high quality hexagonal ZnO thin film with 30 in-plane rotation with respect to the sapphire substrate. The use of the buffer can reduce the lattice mismatch between the ZnO thin film and sapphire substrate; therefore, the lattice constant of ZnO thin film grown on sapphire substrate became similar to that of bulk ZnO with increasing thickness of the buffer layer.  相似文献   

18.
 采用溶胶- 凝胶法制备了TiO2纳米晶溶胶,并以旋涂法(spin-coating)镀制了高折射率光学薄膜。借助光散射技术和透射电镜研究了溶胶的微结构。采用原子力显微镜、场发射扫描电镜、紫外-可见-近红外光谱仪、椭偏仪、漫反射吸收光谱及强激光辐照实验,对膜层的结构、光学性能及抗激光损伤性能进行了系统的表征。结果显示:纳米晶薄膜的折射率达到了1.9,而传统的溶胶-凝胶薄膜折射率只有1.6;同时纳米晶薄膜的抗激光损伤阈值与传统的溶胶-凝胶薄膜相差不大,在1 064 nm处分别为16.3 J/cm2(3 ns脉冲) 和16.6 J/cm2(3 ns脉冲);纳米晶溶胶薄膜可以在保持较高抗激光损伤阈值情况下,大幅度提高薄膜折射率。  相似文献   

19.
Pristine ZnO thin films have been deposited with zinc acetate [Zn(CH3COO)2], mono-ethanolamine (stabilizer), and isopropanol solutions by sol-gel method. After deposition, pristine ZnO thin films have been irradiated by excimer laser (λ = 248, KrF) source with energy density of 50 mJ/cm2 for 30 sec. The effect of excimer laser annealing on the optical and structural properties of ZnO thin films are investigated by photoluminescence and field emission scanning electron microscope. As-grown ZnO thin films show a huge peak of visible region and a wide full width at half maximum (FWHM) of UV region due to low quality with amorphous ZnO thin films. After KrF excimer laser annealing, ZnO thin films show intense near-band-edge (NBE) emission and weak deep-level emission. The optically improved pristine ZnO thin films have demonstrated that excimer laser annealing is novel treatment process at room temperature.  相似文献   

20.
Optical emissions from the major and trace elements embodied in a transparent gel prepared from cooking oil were detected after the gel was spread in a thin film on a metallic substrate. Such emissions are due to the indirect breakdown of the coating layer. The generated plasma, a mixture of substances from the substrate, the layer, and the ambient gas, was characterized using emission spectroscopy. The characteristics of the plasma formed on the metal with and without the coating layer were investigated. The results showed that Al emission induced from the aluminum substrates coated with oil films extends away from the target surface to ablate the oil film. This finally formed a bifurcating circulation of aluminum vapor against a spherical confinement wall in the front of the plume, which differed from the evolution of the plasma induced from the uncoated aluminum target. The strongest emissions of elements from the oil films can be observed at 2 mm above the target after a detection delay of 1.0 μs. A high temperature zone has been observed in the plasma after the delay of 1.0 μs for the plasma induced from the coated metal. This higher temperature determined in the plasma allows the consideration of the sensitive detection of trace elements in liquids, gels, biological samples, or thin films.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号