首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
S. Funk 《Applied Surface Science》2007,253(17):7108-7114
We attempt to correlate qualitatively the surface structure with the chemical activity for a metal surface, Cr(1 1 0), and one of its surface oxides, Cr2O3(0 0 0 1)/Cr(1 1 0). The kinetics and dynamics of CO2 adsorption have been studied by low energy electron diffraction (LEED), Aug er electron spectroscopy (AES), and thermal desorption spectroscopy (TDS), as well as adsorption probability measurements conducted for impact energies of Ei = 0.1-1.1 eV and adsorption temperatures of Ts = 92-135 K. The Cr(1 1 0) surface is characterized by a square shaped LEED pattern, contamination free Cr AES, and a single dominant TDS peak (binding energy Ed = 33.3 kJ/mol, first order pre-exponential 1 × 1013 s−1). The oxide exhibits a hexagonal shaped LEED pattern, Cr AES with an additional O-line, and two TDS peaks (Ed = 39.5 and 30.5 kJ/mol). The initial adsorption probability, S0, is independent of Ts for both systems and decreases exponentially from 0.69 to 0.22 for Cr(1 1 0) with increasing Ei, with S0 smaller by ∼0.15 for the surface oxide. The coverage dependence of the adsorption probability, S(Θ), at low Ei is approx. independent of coverage (Kisliuk-shape) and increases initially at large Ei with coverage (adsorbate-assisted adsorption). CO2 physisorbs on both systems and the adsorption is non-activated and precursor mediated. Monte Carlo simulations (MCS) have been used to parameterize the beam scattering data. The coverage dependence of Ed has been obtained by means of a Redhead analysis of the TDS curves.  相似文献   

2.
Molecular beam scattering measurements have been conducted to examine the adsorption dynamics of CO2 on Cu(1 1 0). The initial adsorption probability, S0, decreases exponentially from 0.43 ± 0.03 to a value close to the detection limit (∼0.03) within the impact energy range of Ei = (0.12-1.30) eV. S0 is independent of the adsorption temperature, Ts, and the impact angle, αi, i.e., the adsorption is non-activated and total energy scaling is obeyed. The coverage, Θ, dependent adsorption probability, S(Θ), agrees with precursor-assisted adsorption dynamics (Kisliuk type) above Ts ∼ 91 K. However, below that temperature adsorbate-assisted adsorption (S increases with Θ) has been observed. That effect is most distinct at large Ei and low Ts. The S(Θ) data have been modeled by Monte Carlo simulations. No indications of CO2 dissociation were obtained from Auger Electron Spectroscopy or the molecular beam scattering data.  相似文献   

3.
Well ordered V2O3(0 0 0 1) films were prepared on Au(1 1 1) and W(1 1 0) substrates. These films are terminated by a layer of vanadyl groups under typical UHV conditions. Reduction by electron bombardment may remove the oxygen atoms of the vanadyl layer, leading to a surface terminated by vanadium atoms. The interaction of oxygen with the reduced V2O3(0 0 0 1) surface has been studied in the temperature range from 80 to 610 K. Thermal desorption spectroscopy (TDS), infrared reflection absorption spectroscopy (IRAS), high resolution electron energy loss spectroscopy (HREELS), X-ray photoelectron spectroscopy (XPS), and density functional theory (DFT) were used to study the adsorbed oxygen species. Low temperature adsorption of oxygen on reduced V2O3(0 0 0 1) occurs both dissociatively and molecularly. At 90 K a negatively charged molecular oxygen species is observed. Upon annealing the adsorbed oxygen species dissociates, re-oxidizing the reduced surface by the formation of vanadyl species. Density functional theory was employed to calculate the structure and the vibrational frequencies of the O2 species on the surface. Using both cluster and periodic models, the surface species could be identified as η2-peroxo () lying flat on surface, bonded to the surface vanadium atoms. Although the O-O vibrational normal mode involves motions almost parallel to the surface, it can be detected by infrared spectroscopy because it is connected with a change of the dipole moment perpendicular to the surface.  相似文献   

4.
F. Gou  A.W. Kleyn 《Surface science》2007,601(18):3965-3969
Molecular dynamics simulations of the CH3 interaction with Si(1 0 0) were performed using the Tersoff-Brenner potential. The H/C ratio obtained from the simulations is in agreement with available experimental data. The results show that H atoms preferentially react with Si. SiH is the dominant form of SiHx generated. The amount of hydrogen that reacts with silicon is essentially energy-independent. H atoms do not react with adsorbed carbon atoms. The presence of C-H bonds on the surface is due to molecular adsorption.  相似文献   

5.
First-principles calculation on the basis of the density functional theory (DFT) and generalized gradient approximation have been applied to study the adsorption of H2 on the stoichiometric O-terminated Cu2O (1 1 1), Cu2O (1 1 1)-CuCUS and Cu-terminated Cu2O (1 1 1) surfaces. The optimal adsorption position and orientation of H2 on the stoichiometric O-terminated Cu2O (1 1 1) surface and Cu-terminated Cu2O (1 1 1) surface were determined and electronic structural changes upon adsorption were investigated by calculating the Local Density of States (LDOS) of the CuCUS 3d and CuCUS 4s of stoichiometric O-terminated Cu2O (1 1 1) surface. These results showed that H2 molecule adsorption on CuCUS site parallel to stoichiometric O-terminated Cu2O (1 1 1) surface and H2 molecule adsorption on Cu2 site parallel to Cu-terminated Cu2O (1 1 1) surface were the most favored, respectively. The presence of surface copper vacancy has a little influence on the structures when H2 molecule adsorbs on CuCSA, OCUS and OCSA atoms and the H2 molecule is only very weakly bound to the Cu2O (1 1 1)-CuCUS surface. From the analysis of stoichiometric O-terminated Cu2O (1 1 1) Local Density of States, it is observed that CuCUS 3d orbital has moved to a lower energy and the sharp band of CuCUS 4s is delocalized when compared to that before H2 molecule adsorption, and overlapped substantially with bands due to adsorbed H2 molecule. The Mulliken charges of H2 adsorption on CuCUS site showed that H2 molecule obtained electron from CuCUS which was consistent with the calculated electronic structural changes upon H2 adsorption.  相似文献   

6.
The adsorption of NO molecule on the LaFeO3 (0 1 0) surface was studied using first-principle calculations based on density functional theory. The calculated results indicate that the Fe-top site is the most favorable for NO adsorption. The N-O bond length, Mulliken charge, and the N-O vibration frequency of the NO molecule are discussed after adsorption. The analysis results of the density of the states show that when NO is adsorbed with the Fe-NO configuration, the bonding mechanism is mainly from the interaction between the NO and the Fe d orbit.  相似文献   

7.
V2O3(0 0 0 1) films have been grown epitaxially on Au(1 1 1) and W(1 1 0). Under typical UHV conditions these films are terminated by a layer of vanadyl groups as has been shown previously [A.-C. Dupuis, M. Abu Haija, B. Richter, H. Kuhlenbeck, H.-J. Freund, V2O3(0 0 0 1) on Au(1 1 1) and W(1 1 0): growth, termination and electronic structure, Surf. Sci. 539 (2003) 99]. Electron irradiation may remove the oxygen atoms of this layer. H2O adsorption on the vanadyl terminated surface and on the reduced surface has been studied with thermal desorption spectroscopy (TDS), vibrational spectroscopy (IRAS) and electron spectroscopy (XPS) using light from the BESSY II electron storage ring in Berlin. It is shown that water molecules interact only weakly with the vanadyl terminated surface: water is adsorbed molecularly and desorbs below room temperature. On the reduced surface water partially dissociates and forms a layer of hydroxyl groups which may be detected on the surface up to T ∼ 600 K. Below ∼330 K also co-adsorbed molecular water is detected. The water dissociation products desorb as molecular water which means that they recombine before desorption. No sign of surface re-oxidation could be detected after desorption, indicating that the dissociation products desorb completely.  相似文献   

8.
The direct and H-mediated dissociation of CO2 on Ni(2 1 1) were investigated at the level of density functional theory. Although formate (HCOO) formation via CO2 hydrogenation was widely reported for CO2 adsorption on metal surfaces, it is found that on Ni(2 1 1) HCOO dissociation into CHO and O is much difficult, while direct dissociation of adsorbed CO2 into CO and O is more favorable. It is also found that the degree of electron transfer from surface to adsorbed CO2 correlates with the elongation of C-O bond lengths and the reduction of the CO2 dissociation barrier.  相似文献   

9.
The intramolecular features of carbon 60 and carbon 84 molecules on Si(1 1 1)-7 × 7 surfaces were studied under a UHV-scanning tunneling microscope. Carbon molecules preferentially appear in faulted halves, rather than in unfaulted halves and corner holes; they are embedded in silicon substrates. The orientation and details of the structure of carbon molecules are determined by applying various sample biases to the silicon substrate. As compared with other fullerenes, a bright pentagonal ring with nebulous clusters which represents the cage structure is clearly observed on top of carbon 60 molecules. The bright stripes associated with partitioned curves which depict eight features of asymmetrical C84 molecules are also investigated on Si(1 1 1)-7 × 7 surfaces. The orientations and possible configurations of C60 and C84 are considered in this work. The energy differences for various features of C60 and C84 molecules are estimated and discussed. The corresponding models with respect to each intramolecular feature are proposed and compared with recent theoretical calculation.  相似文献   

10.
The electronic structures of Fe-doped TiO2 anatase (1 0 1) surfaces have been investigated by all spin-polarized density functional theory (DFT) plane-wave pseudopotential method. The general gradient approximation (GGA)+U (Hubbard coefficient) method has been adopted to describe the exchange-correlation effects. Through the density functional calculations for the formation energies of various configurations, the complex of a substitutional Fe plus an O vacancy was found to form easily in the most range of O chemical potential. The calculated density of the states of the system of Fe-doped surface with a surface oxygen vacancy shows a band gap narrowing from 2.8 to 1.9 eV comparing with the pure surface due to the synergistic effects of surface Fe impurities with O vacancies. The system processes high visible light sensitivity and photocatalytic ability by decreasing extrinsic absorption energy. By comparing the partial DOS of some O and Ti atoms lying in the outermost and bottom layers of Fe-doped surfaces, it was found that the influence of Fe impurities on the electronic structure of the system is localized.  相似文献   

11.
To investigate solvent effects, CO and H2 adsorption on Cu2O (1 1 1) surface in vacuum, liquid paraffin, methanol and water are studied by using density functional theory (DFT) combined with the conductor-like solvent model (COSMO). When H2 and CO adsorb on Cucus of Cu2O (1 1 1) surface, solvent effects can improve CO and H2 activation. The H-H bond increases with dielectric constant increasing as H2 adsorption on Osuf of Cu2O (1 1 1) surface, and the H-H bond breaks in methanol and water. It is also found that both the structural parameters and Mulliken charges are very sensitive to the COSMO solvent model. In summary, the solvent effects have obvious influence on the clean surface of Cu2O (1 1 1) and the adsorptive behavior.  相似文献   

12.
Atomic Au adsorption on the SrO-termination of SrTiO3 (0 0 1) surface has been studied by means of the first-principles calculations based on the density functional theory (DFT). It indicates that charge polarization dominantly contributes to the bonding between Au and SrO-termination. Interfacial charge transfer induces dipole moment and changes work function. The mediating role Au played in charge transfer from electron-doped SrTiO3:Nb to NO has been simulated. Charge transfer from SrTiO3:Nb to Au is ascertained indicating that Au plays as an electron trapping center. SrO-termination has weak activity to NO while the molecule can be strongly adsorbed on negatively charged Au atom. It has been represented that Au mediates the charge transfer from SrTiO3:Nb to NO. Antibonding orbital (π2p*) of NO accommodates the charge and thus molecular bond is weakened (activated). Fukui functions demonstrate the role Au played in transiting the charge transfer from electronically excited SrTiO3 to target species. Evidence that metal deposited on photocatalyst surface effectively separates the electron-hole pairs and improves the photocatalytic activity is presented in the current work.  相似文献   

13.
J.M.R. Muir  H. Idriss 《Surface science》2009,603(19):2986-2990
The reaction of formamide over the (0 1 1) faceted TiO2(0 0 1) surface has been studied by Temperature Programmed Desorption (TPD) and X-ray Photoelectron Spectroscopy (XPS). Two main reactions were observed: dehydration to HCN and H2O and decomposition to NH3 and CO. The dehydration reaction was found to be three to four times larger than the decomposition at all coverages. Each of these reactions is found to occur in two temperature domains which are dependent upon surface coverage. The low temperature pathway (at about 400 K) is largely insensitive to surface coverage while the high temperature pathway (at about 500 K) shifts to lower temperatures with increasing surface coverage. These two temperature pathways may indicate two adsorption modes of formamide: molecular (via an η1(O) mode of adsorption) and dissociative (via an η2(O,N) mode of adsorption). C1s and N1s XPS scans indicated the presence of multiple species after formamide absorption at 300 K. These occurred at ca. 288.5 eV (-CONH-) and 285 eV (sp3/sp2 C) for the C1s and 400 eV-(NH2), 398 eV (-NH) and 396 eV (N) for the N1s and result from further reaction of formamide with the surface.  相似文献   

14.
László Bugyi 《Surface science》2009,603(19):2958-2963
The investigation of Rh, Mo and Rh-Mo nanosized clusters formed by physical vapor deposition on TiO2(1 1 0) single crystal was performed by X-ray Photoelectron Spectroscopy (XPS), Low Energy Ion Scattering (LEIS) and Auger Electron Spectroscopy (AES). There was no sign for site-exchange between Mo and Rh atoms during deposition of Mo onto Rh particles at 330 K. Mixing between Ti and Mo ions was facilitated at the Mo particle-titania interface due to reaction at 550-700 K. The redox process between titania and Mo deposit was hindered at 330 K by forming predeposited rhodium layer (ΘRh = 2.0 ML), but reached nearly the same extent as without Rh after moderate heating to 600 K. The encapsulation of Rh by titania was complete by about 700 K in the presence of 1.2 ML Mo, in case of Mo-predeposition and Mo-postdeposition as well. Elevating the temperature of TiO2/Rh-Mo layers above 700 K, these metals form alloy at the Mo-Rh interface irrespective of deposition sequences.  相似文献   

15.
Density functional theory has been employed to investigate the adsorption and the dissociation of an N2O at different sites on perfect and defective Cu2O(1 1 1) surfaces. The calculations are performed on periodic systems using slab model. The Lewis acid site, CuCUS, and Lewis base site, OSUF are considered for adsorption. Adsorption energies and the energies of the dissociation reaction N2O → N2 + O(s) at different sites are calculated. The calculations show that adsorption of N2O is more favorable on CuCUS adsorption site energetically. CuCUS site exhibits a very high activity. The CuCUS-N2O reaction is exothermic with a reaction energy of 77.45 kJ mol−1 and an activation energy of 88.82 kJ mol−1, whereas the OSUF-N2O reaction is endothermic with a reaction energy of 205.21 kJ mol−1 and an activation energy of 256.19 kJ mol−1. The calculations for defective surface indicate that O vacancy cannot obviously improve the catalytic activity of Cu2O.  相似文献   

16.
Ethylene adsorption was studied by use of DFT/B3LYP with basis set 6-31G(d,p) in Gaussian’03 software. It was found that ethylene has adsorbed molecularly on all clusters with π adsorption mode. Relative energy values were calculated to be −50.86 kcal/mol, −20.48 kcal/mol, −32.44 kcal/mol and −39.27 kcal/mol for Ni13 nanocluster, Ni10(1 1 1), Ni13(1 0 0) and Ni10(1 1 0) surface cluster models, respectively. Ethylene adsorption energy is inversely proportional to Ni coordination number when Ni10(1 1 1), Ni13(1 0 0) and Ni10(1 1 0) cluster models and Ni13 nanocluster are compared with each other.  相似文献   

17.
We present results on the growth and magnetic anisotropies of Co75Fe25 films grown on a Cu(1 1 0) single crystal. Angular dependent MOKE measurements show a thickness dependent, in-plane rotation of the easy axis of magnetisation of up to 60° from the [0 0 1] direction (towards [−1 1 0]). For a film thickness of 5 ML, just greater than that required for the onset of ferromagnetism, uniaxial anisotropy is observed with the easy axis along the [0 0 1] direction. As the film thickness increases this is seen to rotate in-plane towards the [−1 1 0] direction as the contribution from the cubic anisotropy constant grows. At a film thickness of 9 ML there is predominantly cubic anisotropy and at 10 ML the easy axis is rotated to 150° with respect to the [1 −1 0] axis, where it is stabilised.  相似文献   

18.
An effective way to prepare atomically-ordered rutile TiO2(1 1 0) surfaces that have distinct step and terrace structures suitable for oxide thin film deposition is demonstrated. Only a two-step procedure, consisting of 20% HF etching and UHV-annealing at 1100 °C, was required to yield a clean (1 × 1) structure with step and terrace structures. Investigation of the surface using scanning tunneling microscopy, low-energy electron diffraction, and Auger electron spectroscopy reveals that carbon contamination is removed at around 800 °C, and straight steps with clear terraces appear at around 1000 °C.  相似文献   

19.
The adsorption properties of CO on experimentally verified stepped Pt3Sn(1 0 2) surface were investigated using quantum mechanical calculations. The two possible terminations of Pt3Sn(1 0 2) were generated and on these terminations all types of possible adsorption sites were determined. The adsorption energies and geometries of the CO molecule for all those sites were calculated. The most favorable sites for adsorption were determined as the short bridge site on the terrace of pure-Pt row of the mixed-atom-ending termination, atop site at the step-edge of the pure row of pure-Pt-ending termination and atop site at the step-edge of the pure-Pt row of the mixed-atom-ending termination. The results were compared with those for similar sites on the flat Pt3Sn(1 1 0) surface considering the fact that Pt3Sn(1 0 2) has terraces with (1 1 0) orientation. The LDOS analysis of bare sites clearly shows that there are significant differences between the electronic properties of Pt atoms at stepped Pt3Sn(1 0 2) surface and the electronic properties of Pt atoms at flat (1 1 0) surface, which leads to changes in the CO bonding energies of these Pt atoms. Adsorption on Pt3Sn(1 0 2) surface is in general stronger compared to that on Pt3Sn(1 1 0) surface. The difference in adsorption strength of similar sites on these two surface terminations is a result of stepped structure of Pt3Sn(1 0 2). The local density of states (LDOS) of the adsorbent Pt and C of adsorbed CO was utilized. The LDOS of the surface metal atoms with CO-adsorbed atop and of their bare state were compared to see the effect of CO chemisorption on the electron density distribution of the corresponding Pt atom. The downward shift in energy peak in the LDOS curves as well as changes in the electron densities of the corresponding energy levels indicate the orbital mixing between CO molecular orbitals and metal d-states. The present study showed that the adsorption strength of the sites has a direct relation with their LDOS profiles.  相似文献   

20.
Feng Gao 《Surface science》2009,603(8):1126-10202
RuO2(1 1 0) was formed on Ru(0 0 0 1) under oxygen-rich reaction conditions at 550 K and high pressures. This phase was also synthesized using pure O2 and high reaction temperatures. Subsequently the RuO2 was subjected to CO oxidation reaction at stoichiometric and net reducing conditions at near-atmospheric pressures. Both in situ polarization modulation infrared reflection absorption spectroscopy (PM-IRAS) and post-reaction Auger electron spectroscopy (AES) measurements indicate that RuO2 gradually converts to a surface oxide and then to a chemisorbed oxygen phase. Reaction kinetics shows that the chemisorbed oxygen phase has the highest reactivity due to a smaller CO binding energy to this surface. These results also show that a chemisorbed oxygen phase is the thermodynamically stable phase under stoichiometric and reducing reaction conditions. Under net oxidizing conditions, RuO2 displays high reactivity at relatively low temperatures (?450 K). We propose that this high reactivity involves a very reactive surface oxygen species, possibly a weakly bound, atomic oxygen or an active molecular O2 species. RuO2 deactivates gradually under oxidizing reaction conditions. Post-reaction AES measurements reveal that this deactivation is caused by a surface carbonaceous species, most likely carbonate, that dissociates above 500 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号