首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
D.B. Skliar 《Surface science》2007,601(14):2887-2895
Room temperature adsorption and reaction of 2,2,6,6-tetramethyl-3,5-heptanedione (dpmH) on the Si(1 0 0)-2 × 1 surface has been studied with ultra-high vacuum scanning tunneling microscopy (UHV-STM) and temperature programmed desorption (TPD). The molecule is found to chemisorb as a mixture of at least five distinct species. Density functional theory (DFT) was used to calculate the structures and adsorption energies of 12 possible addition products. Unique bonding assignments for each experimental feature are proposed by consideration of a common intermediate reaction network, and a comparison of possible reaction pathways leading to the final products. These assignments are: OH inter-dimer dissociation, OH intra-dimer dissociation, 1,5 intra-dimer addition, 1,5 inter-dimer addition, and intra-dimer [2 + 2]CO addition with OH dissociation on an adjacent dimer. TPD and STM results show that the molecule dissociates completely upon annealing to 700 °C with formation of the c(4 × 4) phase at low exposures, and SiC islands for exposures exceeding 0.15 L.  相似文献   

2.
By means of cluster models coupled with density functional theory, we have studied the hydroboration of the Ge(1 0 0)-2 × 1 surface with BH3. It was found that the Ge(1 0 0) surface exhibits rather different surface reactivity toward the dissociative adsorption of BH3 compared to the C(1 0 0) and Si(1 0 0) surfaces. The strong interaction still exists between the as-formed BH2 and H adspeices although the dissociative adsorption of BH3 on the Ge(1 0 0) surface occurs readily, which is in distinct contrast to that on the C(1 0 0) and Si(1 0 0) surfaces. This can be understood by the electrophilic nature of the down Ge atom, which makes it unfavourable to form a GeH bond with the dissociating proton-like hydrogen. Alternatively, it can be attributed to the weak proton affinity of the Ge(1 0 0) surface. Nevertheless, the overall dissociative adsorption of BH3 on group IV semiconductor surfaces is favourable both thermodynamically and kinetically, suggesting the interesting analogy and similar diversity chemistry of solid surface in the same group.  相似文献   

3.
DFT calculations have been performed to investigate the effect of dielectric responses of the solvent environment on the CO adsorption over CuCl(1 1 1) surface by using COSMO (conductor-like solvent model) model in Dmol3. Different dielectric constants, including vacuum, liquid paraffin, methylene chloride, methanol and water solution, are considered. The effects of solvent model on the structural parameters, adsorption energies and vibrational frequency of CO adsorption over CuCl(1 1 1) surface have been investigated. The calculation results suggest that solvent effects can improve the stability of CO adsorption and reduce the intensity of C-O bond, which might mean that solvent is in favor of C-O bond activation and improve the reaction activity of oxidative carbonylation in a slurry reactor.  相似文献   

4.
The decomposition of methanol on clean and oxygen-precovered CuCl(1 1 1) surface have been studied with the method of density functional theory-generalized gradient approximation (DFT-GGA) and the periodic slab models. The effects of different methanol coverages up to one monolayer are investigated. The activation of the O-H bond of methanol to form the methoxide intermediate, the activation of the C-H bond to form the hydroxymethyl intermediate and the activation of the C-O bond to form methyl are examined. These intermediates can subsequently react to form methoxide, hydroxymethyl, methyl, formaldehyde, formyl, and finally CO on the surface. The chemisorption energies of CH3OH, CH3O, H2COH, CH3, H2CO, HCO, OH and CO at their most favorable adsorption sites are predicted to be −57.9, −235.3, −172.9, −170.5, −67.8, −192.4, −309.5 and −105.7 kJ/mol, respectively. We also confirm that the O-H bond-breaking paths have lower energy barrier, compared to the C-O and C-H bond-breaking paths. However, these reactions need a lower energy barrier when precovered oxygen atoms participate in these reactions.  相似文献   

5.
The adsorption and dissociation of O2 on CuCl(1 1 1) surface have been systematically studied by the density functional theory (DFT) slab calculations. Different kinds of possible modes of atomic O and molecular O2 adsorbed on CuCl(1 1 1) surface and possible dissociation pathways are identified, and the optimized geometry, adsorption energy, vibrational frequency and Mulliken charge are obtained. The calculated results show that the favorable adsorption occurs at hollow site for O atom, and molecular O2 lying flatly on the surface with one O atom binding with top Cu atom is the most stable adsorption configuration. The O-O stretching vibrational frequencies are significantly red-shifted, and the charges transferred from CuCl to oxygen. Upon O2 adsorption, the oxygen species adsorbed on CuCl(1 1 1) surface mainly shows the characteristic of the superoxo (O2), which primarily contributes to improving the catalytic activity of CuCl, meanwhile, a small quantity of O2 dissociation into atomic O also occur, which need to overcome very large activation barrier. Our results can provide some microscopic information for the catalytic mechanism of DMC synthesis over CuCl catalyst from oxidative carbonylation of methanol.  相似文献   

6.
Ab initio density functional theory was used to investigate the adsorption and diffusion of a single NO molecule on the unreconstructed Pt{1 0 0}-(1 × 1) surface. To our knowledge this is the first theoretical study of the NO diffusion activation energy on the Pt{1 0 0} surface. The most stable adsorption position for NO corresponds to the bridge site with the axis of the molecule perpendicular to the surface. The bond of the NO molecule to the surface is through the N-atom. We found that there is a low adsorption energy when the NO molecule is bonded through the O-atom and the axis is perpendicular to the surface, for the three high symmetry sites investigated. NO diffusion between bridge-hollow sites, bridge-atop sites, and hollow-atop sites was also investigated. The barrier for NO diffusion is 0.41 eV, which corresponds to the energy difference between the bridge and hollow sites. This value is around 15% of the highest adsorption energy found on this surface. NO stretch frequencies are also calculated for the three high symmetry sites investigated.  相似文献   

7.
The adsorption of cyanide (CN) or oxygen atom, as well as the coadsorption of CN + O on Cu (1 0 0) surface is studied by using density functional theory (DFT) and the cluster model method. Cu14 cluster is used to simulate the surface. Perpendicular and parallel bonding geometries of CN adsorbed on Cu (1 0 0) surface are considered, respectively. The present calculations show that the CN may be absorbed on top and bridge sites by carbon atom of cyanide (C-down), and C-down on top site is the most favorable. The adsorbed C-N stretch frequencies compared with that of the gaseous CN species are all red-shifted, except the C-down on top site. The charge transfer from the surface to the CN species leads to an increase in work function for the Cu surface. The oxygen atom adsorbed on the four-fold hollow site of Cu (1 0 0) is the most favorable, and is consistent with the experimental study. The coadsorption of O at a four-fold hollow site tends to block adsorption of CN at the nearby sites. If O coverage increases, the CN may be adsorbed on the top and bridges sites with the C-down model. The reaction CN + O → OCN on the Cu (1 0 0) is predicted to be exothermic, and formed OCN species may be stably absorbed on the Cu (1 0 0).  相似文献   

8.
Ab initio calculations of the reflectance anisotropy of Si(1 1 1)-In surfaces are presented. A very pronounced optical anisotropy around 2 eV is found that is related to In-chain states. The distortion of the indium chains characteristic for the (4 × 1) → (8 × 2) phase transition results in a splitting of the 2 eV peak, as observed experimentally. The splitting occurs irrespective wether the phase transition occurs according to the trimer or hexamer model.  相似文献   

9.
We critically evaluate the use of cluster and periodic slab models in describing the NH3/Si(0 0 1) molecule-surface reaction system. We show that considerable discrepancies in the relative adsorbate energetics originate in the limitations of the small cluster and slab models commonly used. These limitations in turn are the consequence of the balance that must be struck between the competing demands of cluster/slab size, basis set size and exchange-correlation model. This leads us to consider “cluster compound models” in which the results of several smaller calculations (separately probing the effects of cluster/slab size, basis set size and exchange-correlation model) are combined to estimate the energy of a converged model.  相似文献   

10.
Using a first-principles pseudopotential technique, we have investigated the adsorption of CH3OH on the Si(0 0 1) surface. We have found that, in agreement with the overall experimental picture, the most probable chemisorption path for methanol adsorption on silicon (0 0 1) is as follows: the gas phase CH3OH adsorbs molecularly to the electrophilic surface Si atom via the oxygen atom and then dissociates into Si-OCH3 and H, bonded to the electrophilic and nucleophilic surface silicon dimer atoms, respectively. Other possible adsorption models and dissociation paths are also discussed. Our calculations also suggest that the most probable methanol coverage is 0.5 ML, i.e., one molecule per Si-Si dimer, in agreement with experimental evidences. The surface atomic and electronic structures are discussed and compared to available theoretical and experimental data. In addition, we propose that a comparison of our theoretical STM images and calculated vibrational modes for the adsorbed systems with detailed experimental investigations could possibly confirm the presented adsorption picture.  相似文献   

11.
Experimental observations indicate that removing bridging oxygen atoms from the TiO2 rutile (1 1 0) surface produces a localised state approximately 0.7 eV below the conduction band. The corresponding excess electron density is thought to localise on the pair of Ti atoms neighbouring the vacancy; formally giving two Ti3+ sites. We consider the electronic structure and geometry of the oxygen deficient TiO2 rutile (1 1 0) surface using both gradient-corrected density functional theory (GGA DFT) and DFT corrected for on-site Coulomb interactions (GGA + U) to allow a direct comparison of the two methods. We show that GGA fails to predict the experimentally observed electronic structure, in agreement with previous uncorrected DFT calculations on this system. Introducing the +U term encourages localisation of the excess electronic charge, with the qualitative distribution depending on the value of U. For low values of U (?4.0 eV) the charge localises in the sub-surface layers occupied in the GGA solution at arbitrary Ti sites, whereas higher values of U (?4.2 eV) predict strong localisation with the excess electronic charge mainly on the two Ti atoms neighbouring the vacancy. The precise charge distribution for these larger U values is found to differ from that predicted by previous hybrid-DFT calculations.  相似文献   

12.
The structure of a rectangular TiO2 nanophase grown epitaxially on a Pt(1 1 1) substrate has been investigated by a combined experimental-theoretical approach. It is found that such nanophase is stoichiometric, incommensurate to the substrate and has the structure of a lepidocrocite layer. The film is weakly bound to the metal surface via the O atoms of the oxide layer and consequently it does not have a fully wetting behavior. Two almost iso-energetic structures have been found based on first principles DFT calculations, one characterized by a short and one by a long interface distance, this latter being energetically slightly preferred. However, when the strain due to lattice mismatch is accommodated on the Pt(1 1 1) substrate instead of the TiO2 film, only the long interface structure is found. The analysis of measured and computed valence band spectra and STM images supports the long interface, weakly interacting model.  相似文献   

13.
We have employed the pseudopotential method and the density functional scheme to study the atomic geometry and electronic states of the GaSb(0 0 1) surface such as (1 × 3), c(2 × 6) and (4 × 3) reconstructions. It is found that both of (1 × 3) and c(2 × 6) reconstructions are characterised by metallic band structures, and thus violate the so-called electron counting rule, one of the main building principles of the stability of compound semiconductor surfaces. We establish that the stability of these reconstructions results from significant elastic deformation in the top atomic layers of the surface, a process which overcomes the penality incurred by the violation of the electron counting rule. The atomic geometry and electronic states for the two reconstructions are compared and contrasted with each other. The α and β phases of the (4 × 3) reconstruction also show large atomic relaxations but are semiconducting and obey the electron counting rule.  相似文献   

14.
Qian-Lin Tang  Xiang He 《Surface science》2009,603(13):2138-1271
The water gas shift (WGS) reaction is an important reaction system and has wide applications in several processes. However, the mechanism of the reaction is still in dispute. In this paper we have investigated the reaction mechanism on the model Cu(1 1 1) system using the density functional method and slab models. We have characterized the kinetics and the thermodynamics of the four reaction pathways containing 24 elementary steps and computed the reaction potential energy surfaces. Calculations show that the formate (HCOO) intermediate mechanism (CO + OH → HCOO → CO2 + H) and the associative mechanism (CO + OH → CO2 + H) are kinetically unlikely because of the high formation barrier. On the other hand, the carboxyl (HOCO) intermediate mechanism (CO + OH → HOCO → CO2 + H) and the redox mechanism (CO + O → CO2) are demonstrated to be feasible. Our calculations also indicate that surface oxygen atoms can reduce the barriers of both water dissociation and HOCO decomposition significantly. The calculated potential energy surfaces show that the water dissociation which produces OH groups is the rate-determining step at the initial stage of the reaction or in the absence of surface oxygen atoms. With the development of the reaction or in the presence of oxygen atoms on the surface, CO + OH → HOCO and CO + O → CO2 become the rate-limiting step for the carboxyl and redox mechanisms, respectively.  相似文献   

15.
A theoretical non-contact atomic force microscope (nc-AFM) image is simulated for an individual C60 molecule adsorbed on the clean Si(0 0 1) surface. The ability to identify the intramolecular features of the molecule though nc-AFM imaging would allow many of the different configurations the molecule may take when adsorbed, to be identified. This would be an important preliminary step in the manipulation of the molecule along the surface, as the initial configuration that the molecule is in will affect the periodicity of the tip trajectory during the manipulation event (see D.L. Keeling et al., Phys. Rev. Lett. 94 (2005) #146104). Presented in this paper are simulated images and force curves above important sites for key stable configurations of the C60 molecule. It is shown that in principle it is possible to distinguish between the different configurations of the molecule using nc-AFM. An ab initio DFT method was used to accurately describe the chemical interaction between the adsorbate and the Si tip, which has a single dangling bond at its apex.  相似文献   

16.
Ethylene adsorption was studied by use of DFT/B3LYP with basis set 6-31G(d,p) in Gaussian’03 software. It was found that ethylene has adsorbed molecularly on all clusters with π adsorption mode. Relative energy values were calculated to be −50.86 kcal/mol, −20.48 kcal/mol, −32.44 kcal/mol and −39.27 kcal/mol for Ni13 nanocluster, Ni10(1 1 1), Ni13(1 0 0) and Ni10(1 1 0) surface cluster models, respectively. Ethylene adsorption energy is inversely proportional to Ni coordination number when Ni10(1 1 1), Ni13(1 0 0) and Ni10(1 1 0) cluster models and Ni13 nanocluster are compared with each other.  相似文献   

17.
A theoretical epitaxial growth model with realistic barriers for surface diffusion is investigated by means of kinetic Monte Carlo simulations to study the growth modes of metastable (3 3 1) nanofacets on Au and Pt(1 1 0) surfaces. The results show that under experimental atomic fluxes, the (3 3 1) nanofacets grow by 2D nucleation at low temperature in the submonolayer regime. A metastable growth phase diagram that can be useful to experimentalists is presented and looks similar to the one found for the stationary growth of the bcc(0 0 1) surface in the kinetic 6-vertex model.  相似文献   

18.
Minyoung Lee 《Surface science》2009,603(24):3404-1431
Atomic oxygen embedment into a Cu(1 0 0) surface is studied by density functional theory calculation and the nudged elastic band method. As the oxygen coverage increases on the unreconstructed surface from 0.25 monolayer (ML) to 0.75 ML, the energy barrier for oxygen embedment decreases and an energetically favorable sub-surface site is found at 0.75 ML coverage. At a fixed oxygen coverage of 0.5 ML, the oxygen embedment energetics vary with the surface morphology and the embedment is found to be more probable for reconstructed structures compared to the bare surface. On the missing-row reconstructed surface, we find that the energy barrier for atomic oxygen embedment is smaller through the missing-row compared to other paths, suggesting a mechanism for the formation of sub-surface oxygen structures that are consistent with a recent experiment. The energy barrier for sub-surface oxygen diffusion is predicted to be less than that for on-surface diffusion.  相似文献   

19.
The WC(1 0 0) surface has been studied by using ab initio methods of the density functional theory and pseudopotentials. Calculations have shown that surface and undersurface atoms move from their bulk positions. Namely, carbon atoms moved outward, while tungsten atoms moved inward. Five geometric cases for Co/WC(1 0 0) system were compared: (A) Co atoms are above C atoms; (B) Co atoms are above W atoms; (C) Co atoms are in the four-fold sites above WC pairs; (D and E) Co atoms are above the W-W-C and C-C-W three-fold sites, respectively - and the (A) case has been found to be energetically preferable. In all cases, Co layers have been found to be ferromagnetic. The densities of states for the bulk fcc-WC, the WC(1 0 0) surface, and the WC/Co system were compared.  相似文献   

20.
Interactions of atomic and molecular hydrogen with perfect and deficient Cu2O(1 1 1) surfaces have been investigated by density functional theory. Different kinds of possible modes of H and H2 adsorbed on the Cu2O(1 1 1) surface and possible dissociation pathways were examined. The calculated results indicate that OSUF, CuCUS and Ovacancy sites are the adsorption active centers for H adsorbed on the Cu2O(1 1 1) surface, and for H2 adsorption over perfect surface, CuCUS site is the most advantageous position with the side-on type of H2. For H2 adsorption over deficient surface, two adsorption models of H2, H2 adsorbing perpendicularly over Ovacancy site and H2 lying flatly over singly-coordinate Cu-Cu short bridge, are typical of non-energy-barrier dissociative adsorption leading to one atomic H completely inserted into the crystal lattice and the other bounded to CuCUS atom, suggesting that the dissociative adsorption of H2 is the main dissociation pathway of H2 on the Cu2O(1 1 1) surface. Our calculation result is consistent with that of the experimental observation. Therefore, Cu2O(1 1 1) surface with oxygen vacancy exhibits a strong chemical reactivity towards the dissociation of H2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号