首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Vanadium dioxide shows a passive and reversible change from a monoclinic insulator phase to a metallic tetragonal rutile structure when the sample temperature is close to and over 68 °C. As a kind of functional material, VO2 thin films deposited on fused quartz substrates were successfully prepared by the pulsed laser deposition (PLD) technique. With laser illumination at 400 nm on the obtained films, the phase transition (PT) occurred. The observed light-induced PT was as fast as the laser pulse duration of 100 fs. Using a femtosecond laser system, the relaxation processes in VO2 were studied by optical pump-probe spectroscopy. Upon a laser excitation an instantaneous response in the transient reflectivity and transmission was observed followed by a relatively longer relaxation process. The alteration is dependent on pump power. The change in reflectance reached a maximum value at a pump pulse energy between 7 and 14 mJ/cm2. The observed PT is associated with the optical interband transition in VO2 thin film. It suggests that with a pump laser illuminating on the film, excitation from the dθ,? - state of valence band to the unoccupied excited mixed dθ,?-π* - state of the conduction band in the insulator phase occurs, followed by a resonant transition to an unoccupied excited mixed dθ,?-π* - state of the metallic phase band.  相似文献   

2.
We measured reflectivity spectra of polycrystalline Mg1−xB2 samples, which show a metal-insulator transition with x. After performing the Kramers-Kronig analysis, the obtained optical conductivity spectra σ(ω) of MgB2 show a narrow Drude peak in the far-infrared region and a broad peak in the mid-infrared region. As x increases, the spectral weight of the Drude peak is strongly suppressed and that of the broad peak becomes enhanced a little. The existence of the broad mid-infrared peak in the insulating sample suggests that this peak might not be related to the free carriers in MgB2. In the far-infrared region, we also observe that the low energy dielectric constant of Mg1−xB2 diverges near the metal-insulator phase boundary (i.e. x=0.08). This result implies the possibility of a phase separation and a percolative metal-insulator transition in Mg1−xB2.  相似文献   

3.
We studied the evolution of the electronic structure of VO2 across the metal-insulator transition. The electronic structure was calculated using the standard TB-LMTO-ASA method. The calculated DOS was compared to previous photoemission and X-ray absorption spectra. The electronic structure is discussed in terms of the usual molecular-orbital scheme. In the metallic phase, the d band appears at the bottom of the V 3d bands and crosses the Fermi level. In the insulating phase, the d band is split around 2 eV opening a pseudo band gap at the Fermi level. The largest effect of the splitting appears in the unoccupied part of the d band. The calculated value of the splitting accounts for 77% of the experimental value, 2.6 eV. The results suggest that electron-lattice interaction seems to be the dominant factor in the splitting of the d band.  相似文献   

4.
The ultrafast terahertz response to the photoexcitation in vanadium dioxide was investigated using the optical-pump terahertz-probe technique at room temperature. The optical excitation at 790 nm induced an ultrafast decrease of the transmittance of the terahertz pulses corresponding to the increase of the electronic conductivity within 0.7 ps, and then the transmittance decreases gradually up to 100 ps. This two-step behavior is very similar to the previous reports of the time resolved X-ray and electron diffractions. This fact indicates that the increase of the electronic conductivity and the change of the lattice structure proceed in parallel, and the photo-induced insulator-metal phase transition is of the Peierls type.  相似文献   

5.
6.
Quasi-thermal-equilibrium states of electron-hole (e-h) systems in photoexcited insulators are studied from a theoretical viewpoint, stressing the exciton Bose-Einstein condensation (BEC), the e-h BCS-type pair-condensed state, and the exciton Mott transition between an insulating exciton/biexciton gas phase and a metallic e-h plasma phase. We determine the quasi-equilibrium phase diagram of the e-h system at zero and finite temperatures with applying the dynamical mean-field theory (DMFT) to the e-h Hubbard model with both repulsive and attractive on-site interactions. Effects of inter-site interactions on the exciton Mott transition are also clarified with applying the extended DMFT to the extended e-h Hubbard model.  相似文献   

7.
Effects of epitaxial stress on the metal-insulator transition of V2O3 have been studied for in the form of epitaxial thin films grown on α-Al2O3 (0001) and LiTaO3 (0001) substrates. A metallic phase is stabilized down to 2 K in the V2O3 thin film on α-Al2O3 (0001), where the a-axis is compressed by 4% owing to large epitaxial stress. On the other hand, the transition temperature TMI is raised by 20 K from the value of 170 K in bulk samples in the film on LiTaO3 (0001), where the a-axis is expanded. These results suggest an intimate relationship between the a-axis length and TMI in V2O3. The conductivity of the metallic ultrathin films shows logarithmic temperature dependence below 20 K, probably due to the Anderson localization in two-dimensional systems.  相似文献   

8.
The electroresistance (ER) of La0.67Ca0.33MnO3 (LCMO) epitaxial thin films with different thicknesses was studied. For the 110 nm thick LCMO film, its ER shows a maximum at Tp, where the resistance shows a peak, and decreases to zero at lower temperatures. While for the 30 nm thick LCMO film, its ER is remarkable in a wide temperature range. Another interesting observation in this work is that the electric current can tune the magnetoresistance of the ultrathin LCMO thin film. The results were discussed by considering the coexistence of ferromagnetic metallic phase with the charge ordered phase, and the variation of the phase separation with film thickness and electric current. This work also demonstrates that electric current can tune the magnetoresistance of the manganites, which is helpful for their applications.  相似文献   

9.
The electronic transport behavior of La0.67Sr0.33MnO3 epitaxial thin films with different thicknesses has been investigated under various applied DC currents. The 20 and 70 nm thick films show a giant negative electroresistance (ER). In contrast, the films with 100 nm thickness show unusual giant positive ER, which can reach 30% with the current density of 1.8×108 A/cm2 at room temperature. It is interesting that the electric current can also change the magnetoresistance of the films. The results were explained by considering the spin polarized current induced increase of ferromagnetic metallic phase and current-induced lattice distortion via electron wind force under high current density.  相似文献   

10.
The luminescence and scintillation properties of Cs2LiLuCl6:0.5%Ce3+ are presented. Special attention is devoted to a 9.4 ns fast emission at 275 nm that can only be excited via the highest cubic field 5de state of Ce. Contrary to Cs3LuCl6 and Cs2LiYCl6, where the same type of fast emission was observed, the emission in Cs2LiLuCl6 is still observed at room temperature. Assuming that the 5de state is located inside the host conduction band (CB), we propose that the emission originates from a mixed state at or just below the bottom of the CB and ends at the 4f ground state of Ce3+. To proof this model we studied the thermal quenching of the anomalous luminescence and performed X-ray photoelectron spectroscopy. A model for a temperature-activated energy transfer from the anomalous state to the lowest 5dt excited state of Ce3+ explains most of the results. Besides the 275 nm emission, the material shows 5dt-4f Ce3+ emission at 370 and 406 nm and 2 ns fast core-valence luminescence when excited with 16-22 eV photons. The scintillation properties of Cs2LiLuCl6:Ce are briefly discussed.  相似文献   

11.
Ba(ZrxTi1−x)O3 (BZT) (x = 0.20 and 0.30) thin films are deposited on Pt(1 1 1)/Ti/SiO2/Si(1 0 0) substrate by sol-gel method. X-ray diffraction patterns show that the thin films have a good crystallinity. Optical properties of the films in the wavelength range of 2.5-12 μm are studied by infrared spectroscopic ellipsometry (IRSE). The optical constants of the BZT thin films are determined by fitting the IRSE data using a classical dispersion formula. As the wavelength increases, the refractive index decreases, while the extinction coefficients increase. The effective static ionic charges are derived, which are smaller than that in a purely ionic material for the BZT thin films.  相似文献   

12.
A series of the double-doping samples La(2+x)/3Sr(1−4x)/3Mn1−xCrxO3 (0?x?0.25) with the Mn3+/Mn4+ ratio fixed at 2:1 have been fabricated. The structural, magnetic, transport properties and Raman spectroscopy have been investigated, and no apparent crystal structure change is introduced by Cr doping up to x=0.25. But the Curie temperature TC and metal-insulator transition temperature TMI are strongly affected by Cr substitution. The room temperature Raman spectra start exhibiting some new features following the increasing concentration of Cr substitutions. Moreover, it is worth noting that the frequency of the A1g phonon mode can also be well correlated with the A-site mismatch effect (σ2), which is influenced mainly by the variety of the Sr content.  相似文献   

13.
Brillouin scattering studies have been carried out on high-quality single crystals of undoped and 0.9% Cr-doped V2O3. The observed modes in both the samples at ∼12 and ∼60 GHz are associated with the surface Rayleigh wave (SRW) and bulk acoustic wave (BAW), respectively. In the undoped sample, the mode frequencies of the SRW and BAW modes decrease as the temperature is lowered from room temperature to the insulator-metal transition temperature (TIM=TN=∼130 K). Below the transition, the modes show hardening. In the doped sample, the SRW mode shows a similar temperature-dependence as the undoped one, but the BAW mode shows hardening from room temperature down to the lowest temperature (50 K). This is the first measurement of the sound velocity below TIM in the V2O3 system. The softening of the SRW frequency from 330 K to TIM can be qualitatively understood on the basis of the temperature-dependence of C44, which, in turn, is related to the orbital fluctuations in the paramagnetic metallic phase. The hardening of the mode frequencies below TIM suggests that C44 must increase in the antiferromagnetic insulating phase, possibly due to the orbital ordering.  相似文献   

14.
The samples with the Mn3+/Mn4+ ratio fixed at 2:1 La(2+x)/3Sr(1−x)/3Mn1−xCrxO3 (0≤x≤0.20) have been prepared. The magnetic, electrical transport, and magnetoresistance properties have been investigated. Remarkable transport and colossal magnetoresistance (CMR) effect, as well as cluster glass (CG) behaviors have been clearly observed in the samples studied. It was found that the Curie temperature Tc and insulator−metal transition temperature Tp1 are strongly affected by Cr substitution. The experiment observations are discussed by taking into account the variety of tolerance factors t; the effects of A-site radius 〈rA〉 and the A-site mismatch effect (σ2).  相似文献   

15.
High-quality CsPbCl3 films composed of crystallites with narrow size distributions are achieved for various size levels, from microcrystalline to polycrystalline, by a novel heat-treatment method applied to the same amorphous films. Their photoluminescence is dominated by free-exciton emission at every size level without showing trapped-exciton emission in great contrast to the case for single crystals. The microcrystalline state shows more than an order of magnitude stronger free-exciton emission than the polycrystalline state, and exhibits intense stimulated emission under high-power excitation.  相似文献   

16.
We have measured the surface acoustic wave velocity shift in a GaAs/AlGaAs heterostructure containing a two-dimensional electron system (2DES) in a low-density regime (<1010 cm−2) at zero magnetic field. The interaction of the surface acoustic wave with the 2DES is not well described by a simple model using low-frequency conductivity measurements. We speculate that this conflict is a result of inhomogeneities in the 2DES, which become very important at low density. This has implications for the putative metal-insulator transition in two dimensions.  相似文献   

17.
Y.W. Li  J.H. Yao  J.W. Yang 《Physics letters. A》2009,373(43):3974-3977
The effect of O2 adsorption on the electron transport behavior of Fe-porphyrin molecule is investigated by the first-principles computational approach. The current-voltage characteristics of Fe-porphyrin and O2 adsorbed Fe-porphyrin between gold electrodes are calculated. We find that the conductance of the Fe-porphyrin decreases dramatically upon the adsorption of O2, which suggests that this system has potential application as a molecular sensor or a switch. This switching-behavior is analyzed from the evolutions of the transmission spectra and the molecular projected self-consistent Hamiltonian states of the molecular systems.  相似文献   

18.
Electron paramagnetic resonance on La2/3−xYxCa1/3MnO3 in the paramagnetic (PM) regime is presented for 0≤x≤0.133. The resonance linewidth (ΔHpp) decreases with cooling, reaches the minimum at Tmin, and then anomalously increases with further cooling toward Tc. Our analysis on ΔHpp(T) below Tmin shows that the anomalous PM behavior below Tmin is due to the appearance of a ferromagnetic (FM) phase within the PM matrix caused by the applied magnetic fields. The correlation between the anomalous PM and the colossal magnetoresistance is discussed. We argue that both are caused by the phase segregation in which the compound is phase-separated into a mixture of FM and PM regions.  相似文献   

19.
The temperature-dependent luminescence of Eu:Ca2Gd8Si6O26 and its decay pathways are investigated in order to assess the utility of the material as a thermometric phosphor. Non-radiative decays are found to compete with radiative processes even at room temperature. A decay pathway involving decay through charge-transfer states is proposed based on the decay profiles of emissions from 5D1 and 5D0 levels and on the temperature sensitivity of the spectra as observed after excitation by several wavelengths. The implications of this on solid-state lighting are also discussed.  相似文献   

20.
(n-C3H7)4N[FeIIFeIII(dto)3] shows a new type of first order phase transition called charge-transfer phase transition around 120 K, where the charge transfer between FeII and FeIII occurs reversibly. Recently, we have succeeded in obtaining single crystals of the title complex and determined the crystal structure at room temperature. Crystal data: space group P63, Z=2. Moreover, we have investigated the structural transition caused by the charge-transfer phase transition by means of powder X-ray diffraction measurement. When the temperature is decreased, the a-axis, which corresponds to the hexagonal ring size in two-dimensional honeycomb network structure of [FeIIFeIII(dto)3], contracts by 0.1 Å at the charge-transfer transition temperature (TCT), while the c-axis, perpendicular to the honeycomb network layer, elongates by 0.1 Å at TCT. Consequently, when the temperature is decreased, the unit cell volume decreases without noticeable anomaly around TCT, which is responsible for the quite small vibrational contribution to the entropy change, compared with usual spin crossover transition. Thus, the charge-transfer phase transition around 120 K for (n-C3H7)4N[FeIIFeIII(dto)3] is regarded as spin entropy driven phase transition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号