首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 40 毫秒
1.
The applications of newer Sb2S3 material as a suitable absorber material for the solar cells have been effected by the toxicity of Sb. The present study is an effort to synthesize lower Sb contents Sn doped Sb2S3 materials by retaining or improving the morphological and optical properties. SnCl2 and SbCl3 are used respectively as Sn and Sb sources, while Na2S2O3 has been used as a source of S in chemical bath deposition method. Bath temperature was maintained at 10 °C and the deposition time was 4 h and the annealing of the films in vacuum was done for 2 h at 250 °C. X-ray diffraction, Rutherford backscattering spectroscopy, scanning electron microscopy and ultraviolet/visible light spectroscopy have been used for the study of structural, morphological and the optical properties. The chemical composition determined from RBS is Sn0.11Sb2S3. Phase analysis confirms the orthorhombic Sb2S3 phase with b and c axis as the preferred ones for the impurity Sn atoms. Grain growth at lower deposition temperature is enhanced on the account of doping. Nanosized spherical particles are seen in the optical micrographs. Annealing lowers the band gap, the values being 1.50 and 1.31 eV for the unannealed and the annealed samples respectively.  相似文献   

2.
The paper presents the X-ray photoelectron spectra (XPS) of the valence band and core levels of semiconductor ferroelectric Sb2S3 single crystals, which show weak phase transitions and anomalies of various physical properties. The XPS were measured with monochromatized Al K α radiation in the energy range 0-1450 eV and the temperature range 160-450 K. The valence band is located 0.8-7.5 eV below the Fermi level. Experimental results of the valence band and core levels are compared with the results of theoretical ab initio calculations of the molecular model of Sb2S3 crystal. The chemical shifts in Sb2S3 crystal for the Sb and S states are obtained. Results revealed that the small structural rearrangements at the phase transition T c1 = 300 K shift the Fermi level and all electronic spectrum. Also, temperature dependence of a spontaneous polarisation shifts the electronic spectra of the valence band and core levels. Specific temperature-dependent excitations in Sb 3d core levels are also revealed.  相似文献   

3.
The electronic structure and chemical bonding in HgGa2S4 crystals grown by vapor transport method are investigated with X-ray photoemission spectroscopy. The valence band of HgGa2S4 is found to be formed by splitted S 3p and Hg 6s states at binding energies BE=3-7 eV and the components at BE=7-11 eV generated by the hybridization of S 3s and Ga 4s states with a strong contribution from the Hg 5d states. At higher binding energies the emission lines related to the Hg 4f, Ga 3p, S 2p, S 2s, Hg 4d, Ga LMM, Ga 3p and S LMM states are analyzed in the photoemission spectrum. The measured core level binding energies are compared with those of HgS, GaS, AgGaS2 and SrGa2S4 compounds. The valence band spectrum proves to be independent on the technological conditions of crystal growth. In contrast to the valence band spectrum, the distribution of electron states in the bandgap of HgGa2S4 crystals is found to be strongly dependent upon the technological conditions of crystal growth as demonstrated by the photoluminescence analysis.  相似文献   

4.
GaSb(0 0 1) was treated with (NH4)2Sx and the evolution of the interfacial chemistry was investigated, in situ, with monochromatic X-ray photoelectron spectroscopy (XPS), following heat treatment and exposure to trimethylaluminum (TMA) and deionized water (DIW) in an atomic layer deposition reactor. Elemental Sb (Sb-Sb bonding) as well as Sb3+ and Sb5+ chemical states were initially observed at the native oxide/GaSb interface, yet these diminished below the XPS detection limit after heating to 300 °C. No evidence of Ga-Ga bonding was observed whereas the Ga1+/Ga-S chemical state was robust and persisted after heat treatment and exposure to TMA/DIW at 300 °C.  相似文献   

5.
High resolution core level and valence band (VB) X-ray photoelectron spectra (XPS) of the non-conductor pyroxene minerals, bronzite ((Mg0.8,Fe0.2)2Si2O6) and diopside (Ca(Mg0.8Fe0.2)Si2O6) have been obtained with the Kratos magnetic confinement charge compensation which minimizes differential charge broadening. Observed Si 2p, O 1s, Mg 2p and Ca 2p total linewidths are all about 1.3 eV, very similar to those observed previously with the same instrument for SiO2 and olivines ((Mg,Fe)2SiO4); and we consider that these widths are within 0.05 eV of the minimum room temperature linewidths for these samples with the experimental resolution of this instrument of 0.35 eV. These linewidths are all determined by vibrational broadening due to the M-O symmetric stretch in the ion states. The Si 2p binding energies (BE) are intermediate between the quartz and olivine Si 2p binding energies; but the O 1s spectra resolve the bridging oxygen (BO) and non-bridging oxygen (NBO) in the unit, with the NBO O 1s very close in BE to the O in olivine, and the BO very close to the BO in SiO2. Indeed in both diopside and bronzite, it is possible to separate the three structurally inequivalent O atoms in the O 1s spectra: the BO at a BE of about 532.6 eV, a NBO peak from the MgOSi moiety (Mg in the M1 site) at about 531.3 eV, and a NBO peak at 531 eV from the CaOSi or the FeOSi moieties (Ca and Fe in the M2 site). The O 1s BE increases with the increase in the electronegativity Ca < Mg < Fe < Si. Moreover, the linewidths of these peaks increase when Fe and Mg are both present in either M1 (diopside) or M2 (bronzite) sites.The valence band spectra for the two pyroxenes are rather similar, and quite different from the VB spectra of quartz and olivines. The dispersion of the pyroxene VB spectra is intermediate between the VB spectra of quartz and olivines; the valence band spectrum of pyroxenes are more dispersed than in olivines by about 1.5 eV but less dispersed than quartz by about 1.5 eV. These VB spectra can be assigned using the previous olivine VB spectra and high quality pseudopotential density functional theoretical calculations in the generalized gradient (GGA) approximation. As for the olivine VB spectra, the Fe 3d t2g and eg orbitals in M1 and M2 sites of the pyroxene are located at the top of the pyroxene valence band, and the BE of the Fe 3d peaks from M1 are about 0.7 eV smaller than the Fe 3d peaks in M2. The theoretical XPS valence band spectra using the theoretical density of states and the Gelius intensity approximation are is in good semi-quantitative agreement with the experimental spectra. This intermediate dispersion of pyroxenes is due to the partial polymerization of the Si-O units in pyroxenes, and the intermediate charge on the Si atoms as indicated by the Si 2p BE.  相似文献   

6.
In the present paper, we have reported the room temperature growth of antimony sulphide (Sb2S3) thin films by chemical bath deposition and detailed characterization of these films. The films were deposited from a chemical bath containing SbCl3 and Na2S2O3 at 27 °C. We have analysed the structure, morphology, composition and optical properties of as deposited Sb2S3 films as well as those subjected to annealing in nitrogen atmosphere or in air. As-deposited films are amorphous to X-ray diffraction (XRD). However, the diffused rings in the electron diffraction pattern revealed the existence of nanocrystalline grains in these films. XRD analysis showed that upon annealing in nitrogen atmosphere these films transformed into polycrystalline with orthorhombic structure. Also, we have observed that during heating in air, Sb2S3 first converts into orthorhombic form and then further heating results in the formation of Sb2O3 crystallites. Optical bandgap energy of as deposited and annealed films was evaluated from UV-vis absorption spectra. The values obtained were 2.57 and 1.73 eV for the as-deposited and the annealed films respectively.  相似文献   

7.
Scalable Sb(III)Sb(V)O4 nanorods from Sb2O5 powder were prepared using solvothermal route. XRD and HRTEM demonstrate that the nanorods are single-crystal orthorhombic-Sb2O4 phase with several micrometers long and 200-300 nm diameter size. XPS result further shows that the antimony cations in the nanorods are composed of three valence and five valence antimony ions. The emission of the nanorods appears around 450 nm wavelength. The formation mechanism of the Sb(III)Sb(V)O4 nanorods was discussed in detail.  相似文献   

8.
Air-broadened linewidths, pressure-induced shift coefficients and their temperature dependences were retrieved for over 1000 transitions in the ν3 band of 14N16O2 at 6 μm. In addition, precise line center positions and relative intensities were also determined. The results were obtained by fitting simultaneously 27 spectra recorded at high resolution (0.002-0.006 cm−1) with two Fourier transform spectrometers and gas sample temperatures ranging from 206 to 298 K. It was necessary to modify the multispectrum fitting software to accommodate constraints on the retrieved parameters of closely spaced spin-split doublets in order to successfully determine their broadening and shift parameters. The variations of the widths, shifts and their temperature dependences with the quantum numbers were investigated. Subsets of the observed linewidths were reproduced to within 3% using an empirical smoothing function.  相似文献   

9.
The interaction between the (1 0 0) surface of SnTe single crystal and molecular oxygen was studied by means of X-ray photoelectron spectroscopy (XPS). Analysis of the obtained spectra shows that the mechanism of surface oxidation does not change in the range of oxygen exposure 108-1013 L. During the oxidation an additional component shifted 1.1 eV towards higher binding energies appears in the Sn 3d spectra. The Te 3d5/2 spectra fitting reveals two additional components with binding energies close to Te0 and Te+4. The dependence of the additional components fraction in both Sn 3d and Te 3d5/2 spectra on the oxygen exposure is semi-logarithmic. On the base of the experimental data two possible mechanisms are proposed.  相似文献   

10.
Sb2O3 nanorod-bundles with length of about 4 μm were fabricated in the presence of polyvinyl alcohol (PVA) by a simple hydrothermal method. The composition, morphology, microstructure and optical property of the as-prepared bundles were characterized by XRD, XPS, SEM, TEM and Raman spectrum. The results showed that the nanorod-bundles were composed of massive orthorhombic phase Sb2O3 nanorods grown along [0 0 1] direction. It was speculated that the nanorod-bundles developed through self-assembly of initially scattered nuclei into microdisks and subsequent oriented attachment process. PVA played a crucial role in the formation of Sb2O3 nanorod-bundles.  相似文献   

11.
We studied the evolution of the electronic structure of VO2 across the metal-insulator transition. The electronic structure was calculated using the standard TB-LMTO-ASA method. The calculated DOS was compared to previous photoemission and X-ray absorption spectra. The electronic structure is discussed in terms of the usual molecular-orbital scheme. In the metallic phase, the d band appears at the bottom of the V 3d bands and crosses the Fermi level. In the insulating phase, the d band is split around 2 eV opening a pseudo band gap at the Fermi level. The largest effect of the splitting appears in the unoccupied part of the d band. The calculated value of the splitting accounts for 77% of the experimental value, 2.6 eV. The results suggest that electron-lattice interaction seems to be the dominant factor in the splitting of the d band.  相似文献   

12.
The electronic structure of phosphorus-contained sulfides InPS4, Tl3PS4, and Sn2P2S6 was investigated experimentally with X-ray spectroscopy and theoretically by quantum mechanical calculations. The partial densities of electron states calculated with the ab initio multiple scattering FEFF8 code correspond well to their experimental analogues—the X-ray K- and L2,3-spectra of sulfur and phosphorus. The good agreement between theory and experiment was also achieved for K-absorption spectra of S and P in the investigated sulfides. In spite of the difference in the crystallographic structure of InPS4, TI3PS4, and Sn2P2S6 that influence the form of K-absorption spectra, the electronic structure of their valence bands are rather similar. This is due to the strong interaction of the P and S atoms, which are the nearest neighbors in the compounds studied. The electron densities of p- and s-states of phosphorus are shifted by about 3 eV to lower energies in comparison to the analogous electron states of sulfur. This is connected with the greater electro-negativity of sulfur, and is confirmed by the calculated electron charge transfer from P to S.  相似文献   

13.
The Pd-Ce interaction was studied over CeO2 (0.3-2.5 wt.%)-Pd (1 wt.%)/α-Al2O3 catalysts used in the reforming reaction of CH4 with CO2. The samples were characterized by using high resolution transmission electron microscopy (HRTEM) and X-ray photoelectron spectroscopy (XPS). The activity and selectivity behavior was in good agreement with that of other supported metal catalysts (Ni and Pd) modified with different promoters. The preliminary results of HRTEM would indicate that the CeOx forms small crystallites around the Pd particle. The XPS analysis for the regions of Ce 3d and Pd 3d, gives an account of Ce being present mostly as Ce3+ and a high binding energy for Pd 3d5/2 (335.3 eV), an evidence of Pd-Ce chemical interaction. The Pd/Al XPS intensity ratios vs. the Pd average particle size, determined by TEM, show an excellent correlation for fresh and used catalyst. These results indicate that the diminution of the Pd/Al ratios was due to Pd sintering. Consequently, the small amounts of CeOx species do not cover the Pd particle, in agreement with the HRTEM results. The overall results stand for the promoter action mechanism of the CeOx for the reforming reaction with CO2.  相似文献   

14.
A theoretical study on Sb-doped SnO2 has been carried out by means of periodic density functional theory (DFT) at generalized gradient approximation (GGA) level. Stability and conductivity analyses were performed based on the formation energy and electronic structures. The results show that Sn0.5Sb0.5O2 solid solution is stable because the formation energy of Sn0.5Sb0.5O2 is −0.06 eV. The calculated energy band structure and density of states showed that the band gap of SnO2 narrowed due to the presence of the Sb impurity energy levels in the bottom of the conduction band, namely there is Sb 5s distribution of electronic states from the Fermi level to the bottom of conduction band after the doping of antimony. The studies provide a theoretical basis to the development and application of Sn1−xSbxO2 solid solution electrode.  相似文献   

15.
Valence-band and conduction-band the electronic structure of the CrS (δ=0) and Cr5S6 (δ=0.17) has been investigated by means of photoemission and inverse-photoemission spectroscopies. The bandwidth of the valence bands of Cr5S6 (8.5 eV) is wider than that of CrS (8.1 eV), though the Cr 3d partial density of states evaluated from the Cr 3p-3d resonant photoemission spectroscopy is almost unchanged between the two compounds concerning shapes as well as binding energies. The Cr 3d (t2g) exchange splitting energies of CrS and Cr5S6 are determined to be 3.9 and 3.3 eV, respectively.  相似文献   

16.
MoO3 and Mo samples containing copper were treated with different hydrocarbon/hydrogen gas mixtures. The formation of Mo2C was followed by X-ray photoelectron spectroscopy (XPS). Spectra taken in the Mo 3d, C 1s, O 1s, Cu 2p and Cu KLL regions demonstrated that the treatment with the hydrocarbon/hydrogen gas mixtures led to the formation of Mo2C. From the comparison of the effects of various hydrocarbons on the XP spectra of Mo 3d we can state that the reduction of MoO3 starts at the lowest temperature for C2H6/H2 (600 K) followed by CH4/H2 (700 K) and C4H10/H2 (723 K). Binding energies of Mo 3d5/2 characteristic for Mo2C are measured in the range of 227.7-228.0 eV. These values were attained at 900 K for CH4/H2, at 800 K for C2H6/H2 and at 873 K for C4H10/H2. Addition of copper to MoO3 catalyzed its reduction and promoted the carburization process.  相似文献   

17.
We report on the single crystal growth and thermoelectric and magnetic properties of Mn-doped Bi2Se3 and Sb2Se3 single crystals prepared by the temperature gradient solidification method. The composition and crystal structure were determined using electron probe microanalysis and θ–2θ powder X-ray diffraction studies, respectively. The lattice constants of several percent Mn-doped Bi2Se3 and Sb2Se3 were slightly smaller than those of the undoped sample due to the smaller Mn atomic radius (1.40 Å) than those of Bi (1.60 Å) and Sb (1.45 Å). Mn-doped Bi2Se3 and Sb2Se3 showed spin-glass and paramagnetic properties, respectively.  相似文献   

18.
Cleaning the surfaces of the as-deposited Ge2Sb2Te5 was studied by X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and X-ray diffraction (XRD). The mixed native oxides on the as-deposited Ge2Sb2Te5 surface can be easily removed by dipping Ge2Sb2Te5 in de-ionized water for 1 min, while the surface morphology remains unchanged after cleaning. Native oxides only re-grow after exposure to air for more than 4 min. Although dipping in water leads to a surface layer deficient in Ge and Sb, the surface composition of Ge2Sb2Te5 can recover to its stoichiometric value after annealing at 200 °C in vacuum. The phase remains amorphous at room temperature after dipping in water, and changes to fcc and hcp after annealing at 100 and 220 °C, respectively.  相似文献   

19.
The photoion yield spectra of an endohedral metallofullerene Pr@C82 were measured in the photon energy range of 100-150 eV by using time-of-flight mass spectrometry. Parent ions Pr@C82+, Pr@C822+ and Pr@C823+ were observed in the mass spectra. The photoion yield spectra of Pr@C822+ showed a broad peak at 120-140 eV that was assigned to the 4d-4f giant dipole resonance of the encapsulated Pr atoms. Absolute photoabsorption cross sections of Pr@C82 were evaluated from the photoion yield spectra to be 37±12 Mb at 110 eV (off-resonance) and 52±13 Mb at 130 eV (on-resonance). These cross sections of Pr@C82 were compared with the results of Ce@C82, the only metallofullerene whose photoionization properties have ever been studied near the 4d edge of the encapsulated metal atom. The enhancement of photoabsorption due to the giant resonance was found to be similar in Pr@C82 and Ce@C82, but there are marked differences in the peak shapes, which can be explained as due to interference effects between the fullerene cage and the encapsulated metal atoms.  相似文献   

20.
The photoluminescence and excitation spectra of Pr3+ activated LiLaP4O12 has been investigated in the 10-300 K temperature region. At all temperatures, the luminescence consists of optical transitions emanating from both the Pr3+ 4f15d1 and the 1S0 states. However, at low temperatures the emission spectrum is dominated by the intraconfiguration emission transitions emanating from the Pr3+1S0 state. With increasing temperature, there is an exchange of intensity between the two emitting states; emission transitions from the 1S0 state exhibit strong intensity quenching while the 4f15d1→4f2 emission transitions reveal intensity gain. These results are explained on the basis of thermal population of the 4f15d1 state by the 1S0 state. The energy barrier of 0.05 eV (403 cm−1) for the nonradiative process is determined from the temperature dependence of the 1S0 lifetime.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号