首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The thermodynamics and structure of the surface adsorbed phase in binary C15-C16 and C15-C17 n-alkane mixtures confined in graphite pores have been studied by differential scanning calorimetry and small-angle X-ray scattering. The previously observed selective adsorption of the longer alkane for chain length differences greater than five carbon atoms is verified but reduced for chain length differences less than or equal to two. With a difference in chain length of one carbon atom, Vegard's law is followed for the melting points of the adsorbed mixture and the (0 2) d-spacing is a continuous function of the mole fraction x. With a two-carbon atom difference, samples aged for 1 week have a lamellar structure for which the entities A1−xBx try to be commensurate with the substrate. The same samples aged for 1 month show a continuous parabolic x-dependence for both the melting points and the d-spacings. An explanation in terms of selective probability of adsorption is proposed based on crystallographic considerations.  相似文献   

2.
E. Kadossov 《Surface science》2007,601(16):3421-3425
The adsorption of n-butane and iso-butane on HOPG (highly-oriented pyrolitic graphite) has been studied by molecular beam scattering. The initial adsorption probability, S0, decreases with impact energy, Ei, and is independent of surface temperature, Ts, i.e., molecular adsorption is present. The adsorption probability, S, increases with coverage, Θ, which is most distinct at large Ei and low Ts. Thus, precursor mediated adsorption is concluded. Whereas S0 of the linear alkane is larger than the one of the branched alkane, consistent with their molecular structure, the shapes of S(Θ) curves are approximately identical. The rotational excitation of the molecules appears to affect S0 for n-butane but not for iso-butane. Monte Carlo simulations (MCS) have been conducted to extract dynamics parameters from the S(Θ) curves.  相似文献   

3.
Molecular dynamics simulations of the 20-keV C60 bombardment at normal incidence of Si, SiC, diamond and graphite targets were performed. The unique feature of these targets is that strong covalent bonds can be formed between carbon atoms from the C60 projectile and atoms in the solid material. The mesoscale energy deposition footprint (MEDF) model is used to gain physical insight into how the sputtering yields depend on the substrate characteristics. A large proportion of the carbon atoms from the C60 projectile are implanted into the lattice structure of the target. The sputtering yield from SiC is ∼twice that from either diamond or Si and this can be explained by both the region of the energized cylindrical tract created by the impact and the number density. On graphite, the yield of sputtered atoms is negligible because the open lattice allows the cluster to deposit its energy deep within the solid. The simulations suggest that build up of carbon with a graphite-like structure would reduce any sputtering from a solid with C60+ bombardment.  相似文献   

4.
Full atomic molecular dynamics simulations of three kinds of n-heptane layers on the graphite (0 0 1) surface have been performed to investigate their melting process. The melting process and the molecule conformation transition during the process are described at the molecular level. The melting mechanism is suggested by analyzing the conformation transitions during the melting process, which is divided into three stages, i.e. the decrease, the fluctuation and the disappearance of the orientation order. The bond-orientation order parameter along the x-direction, the dihedral distribution and the height distribution of the carbonic atom in the n-heptane layers show different behaviors with increasing temperature. Furthermore, the roles of dihedral and van der Waals energy in the melting process are discussed.  相似文献   

5.
The structure of the (0 0 0 1) surface of the -MgCl2 crystal has been investigated using DFT-GGA periodic calculations. The calculated surface relaxation is in agreement with LEED measurements. Motivated for the use of MgCl2 as support for the Ziegler–Natta reaction, we have studied the adsorption of the catalyst (titanium chlorides as monomers or dimers) on the (1 0 0) and (1 1 0) MgCl2 surfaces. The structures of adsorbed species are close to those previously found on cluster models: bridging chlorine atoms connect the Ti to the Mg atoms and the systems remain in high spin states. The (0 0 0 1) surface is the most stable face of the -MgCl2 crystal; however it is Cl-terminated and henceforth poorly reactive; it had been suggested to deposit metallic Mg in order to improve its reactivity. Our modelling explains the failure of this tentative; the interaction between the deposited metal and the surface is repulsive and uncharged Mg atom does not bind.  相似文献   

6.
Jee-Ching Wang   《Surface science》2003,540(2-3):326-336
We have studied the effects of surface step on molecular propane adsorption using molecular-dynamics simulations and a model stepped surface, Pt(6 5 5). Incidences along the step edge (smooth azimuth) and perpendicular to the step edge with upstairs momentum (upstairs azimuth) and downstairs momentum (downstairs azimuth) are considered. In general, the surface step enhances the initial trapping probability of propane except for the downstairs incidences. The most efficient zone in facilitating adsorption is near the bottom of the surface step on the lower terrace where incident molecules experience stronger attraction and an “additional-layer” effect when crossing the step. The least efficient zone is the top of the surface step on the upper terrace due to an opposite “missing-layer” effect. Surface step also creates steric effects such that more incident molecules along the upstairs azimuth but significantly less molecules along the downstairs azimuth impact the step-bottom zone. The latter steric effect, a shadowing effect, undermines the high trapping efficiency of the step-bottom zone to cause the downstairs incidences to have the lowest trapping probabilities. While the shadowing effect can be enhanced by larger incident angles and lower incident energies, the other steric effect on the upstairs incidences is relatively insensitive to the incident energy. Overall, the influence of surface step on molecular adsorption diminishes at low incident energies and large incident angles because longer contact times and less normal momenta result in high trapping probability across the entire stepped surface.  相似文献   

7.
We have studied the structures and stabilities of copper nano-particles and the melting properties of copper surfaces using interatomic potential-based molecular dynamics simulations, where the (1 1 1) surface has been shown to be the most stable in terms of surface energy and melting behaviour. Low energy shapes of nano-particles are influenced by the surfaces present and therefore have a higher proportion of (1 1 1) surface. The effect of surface structure on stability becomes less marked as the size of the nano-particle is increased. Melting is observed to occur below the bulk melting temperature in all the surfaces investigated, at increasingly lower temperatures from the (1 1 1), (1 0 0), (1 1 0) down to the (2 1 0) surface, confirming their order of decreasing stability. The melting processes of defective close-packed copper surfaces were also simulated. Steps, kinks, and facets were all shown to accelerate the melting of the surfaces. The melting is shown to initiate at the site of the defect and the results demonstrate that it is the low-coordinated atoms, at the step edge or kink, that are more mobile at lower temperatures. These features facilitate surface melting even further below the melting temperature than was observed for the perfect surfaces. Furthermore, facets of (1 0 0) surface were shown to be unstable even at moderate temperatures on the close-packed surface.  相似文献   

8.
M. Lindenblatt 《Surface science》2006,600(18):3624-3628
Time-dependent density functional theory for the electronic degrees of freedom has been combined with Ehrenfest dynamics for the nuclei to simulate electron-hole pair excitation due to electronic friction during the chemisorption of hydrogen atoms on an Al(1 1 1) surface. The H-atoms are assumed to be spin-unpolarized in the simulations. Trajectories starting with a hydrogen atom at rest above either the on-top or the fcc-hollow site evolve in qualitatively very different ways: at the fcc-hollow position the H-atom acquires sufficient kinetic energy in the chemisorption well to penetrate into the Al-substrate, thereby increasing the coupling of the motion of the H-atom to the substrate electrons. The electronic excitation spectra, however, are roughly characterized by an exponential decay with similar fictitious temperature parameters of the order of 103 K for both kinds of trajectories. The energy dissipation into electron-hole pairs and the nonadiabatic contribution to the force acting on the hydrogen atom have been calculated along the trajectories.  相似文献   

9.
本文采用分子动力学模拟方法结合镶嵌原子势,研究了在200 K时二元(CoAl)1415团簇的结构随Co原子浓度的变化情况。利用径向分布函数、对分析技术和键取向序参数方法研究了微观局部结构情况,研究结果表明: (CoAl)1415团簇的组分对最终冷却结构影响较大,Co原子浓度为100%~70%的团簇表现出不完全的六角密排结构特征;Co原子浓度为50%的团簇具有局部的体心立方体结构特征;Co原子浓度为30%~10%时,表现出部分区域的二十面体和缺陷二十面体结构特征。  相似文献   

10.
本文采用分子动力学模拟方法结合镶嵌原子势,研究了在200 K时二元(Co Al)1415团簇的结构随Co原子浓度的变化情况.利用径向分布函数、对分析技术和键取向序参数方法研究了微观局部结构情况,研究结果表明:(Co Al)1415团簇的组分对最终冷却结构影响较大,Co原子浓度为100%~70%的团簇表现出不完全的六角密排结构特征;Co原子浓度为50%的团簇具有局部的体心立方体结构特征;Co原子浓度为30%~10%时,表现出部分区域的二十面体和缺陷二十面体结构特征.  相似文献   

11.
We present simulation data for the motion of a polymer chain through a regular lattice of impenetrable obstacles (Evans–Edwards model). Chain lengths range from N= 20 to N= 640, and time up to 107Monte Carlo steps. For N 160, for the central segment we find clear t 1/4behavior as an intermediate asymptote. The expected t 1/2range is not yet developed. For the end segment also the t l/4behavior is not reached. All these data compare well to our recent analytical evaluation of the reptation model, which shows that for shorter times (t104) the discreteness of the elementary motion cannot be neglected, whereas for longer times and short chains (N100) tube renewal plays an essential role also for the central segment. Due to the very broad crossover behavior, both the diffusion coefficient and the reptation time within the range of our simulation do not reach the asymptotic power laws predicted by reptation theory. We present results for the center-of-mass motion, showing the expected intermediate t 1/2behavior, but again only for very long chains. In addition we show results for the motion of the central segment relative to the center of mass, where in some intermediate range we see the expected increase of the effective power beyond the t 1/4law, before saturation sets in. Analysis and simulations agree on defining a new set of criteria as characteristic for reptation of finite chains.  相似文献   

12.
n-Dodecanethiol (RSH) and n-dodecaneselenol (RSeH) molecules have been self-assembled on electrochemically reduced copper sheets. To assess the stability of the resulting monolayers, immersion, during different times varying from minutes to hours, of the modified copper in a solution which contains the competitor molecule has been performed. PM-IRRAS shows a good organisation for all monolayers without any divergence. Based on XPS analysis, we have proved an intercalation process of RSeH molecules followed by adsorption on the free sites of copper modified with the RSH and in similar way the insertion and adsorption of RSH molecules in the RSeH modified copper. The only difference between the two directions is in the kinetics which seems to be faster for thiol compared to selenol.  相似文献   

13.
The effect of the applied trajectory length on the convergence of the self-diffusion coefficient was examined for the SPC/E water model in the NVT ensemble with different system sizes at 293 K. Temperature dependence and isotope effects, via using D2O instead of H2O, were also investigated. A simulation for the polarizable SWM4-DP model was also carried out to compare the effect of different potential models. Radial distribution functions and the neutron weighted structure factor were also calculated; they were found to be insensitive to changing the system size in the range of 216 to 16,000 molecules. On the other hand, the diffusion coefficient is rather sensitive to the applied trajectory length, system size and the method of calculation. The diffusion coefficient is therefore not appropriate for assessing, and distinguishing between, potential models of water, whereas the structure factor could serve as a more stable measure.  相似文献   

14.
We describe results of atomistic molecular dynamics simulations modelling an atomic force microscope (AFM) tip immersed in a fluid. Both the tip and the surface are modelled by rigid arrays of atoms. The tip is pyramidal and the surface is the (100) face of a fcc crystal. The focus is on the solvation forces acting on the tip and on the surface and their relation to the structural and dynamic properties of the fluid. Fluid particles in the neighborhood of the tip-surface junction are found to be highly ordered compared to the bulk, as shown by localized variations in the average fluid density. The atomistic nature of the model gives rise to several effects related to the discrete sizes of the fluid, tip, and surface particles which are not observed in continuum-based theories. A number of simulated force-distance curves are presented, along with an analysis of the effect of changing fluid particle size, tip (lateral) position, tip shape, and the lyocompatability of the tip and surface materials. The atomic-scale distribution of fluid-surface forces is examined for various positions of the tip, and the extent to which the fluid can act as a “cushion” by increasing the effective area of the tip-surface interaction is studied. The effect of a fluid on AFM imaging is investigated by generating “fluid images”, which are shown to be comparable in magnitude to the direct tip-surface interaction in the noncontact mode. We compare images generated by defective and defect-free surfaces, and analyse the fluid-tip forces acting in a lateral direction. An image formed from fluid forces acting in the direction of the surface normal does not show the presence of a vacancy, but an image formed from lateral fluid forces does.  相似文献   

15.
M. Alatalo  A. Puisto 《Surface science》2006,600(8):1574-1578
We have studied the adsorption of O2 on the Cu(1 0 0) surface using both static potential energy surface (PES) calculations and ab initio molecular dynamics. The dynamical calculations complement the PES results, revealing steering effects which could not be predicted based on the static calculations only. We study the effect of oxidation and Ag doping on O2 adsorption dynamics. The results are discussed in the light of recent molecular beam experiments.  相似文献   

16.
Detailed interaction potential energy calculations are performed to determine the potential energy surface experienced by the molecules CO, HCN, H2O and H2CO, when adsorbed on the basal plane (0 0 0 1) of graphite at low temperatures. The potential energy surface is used to find the equilibrium site and configuration of a molecule on the surface and its corresponding adsorption energy. The diffusion constant associated with molecular surface diffusion is calculated for each molecule.  相似文献   

17.
M. Lindenblatt 《Surface science》2006,600(23):5068-5073
The energy dissipation into electron-hole pairs has been simulated ab initio within time-dependent density-functional theory for spin-unpolarized hydrogen atoms interacting with the Al on-top site at the Al(1 1 1) surface. The electron-hole pair excitation spectra are characterized by an approximately exponentially decaying tail of the electron energy distribution. It is shown that both the energy dissipated into electron-hole pairs and the excitation spectra, and hence the chemicurrent yield, show an isotope dependence identical to what expected from the linear friction ansatz and the forced oscillator model.  相似文献   

18.
The thermal transport across the alkanethiol surfactant layer at the nanoparticle/base fluid interface in nanofluids was investigated by molecular dynamics simulation, with consideration of the conformation of the surfactant layer with different surfactant chain lengths and backbone stiffness. The variation of temperature drop at nanoparticle-surfactant interface reveals that the interfacial thermal conductance was mediated by the chain length, possibly due to the difference in the adsorption density of surfactant on the surface of the nanoparticles, because of the blocking effect from the bending of the long alkyl chains. The intrinsic thermal conductivity of the surfactant layer increased with decreasing chain length and increasing chain stiffness because of the phonon scattering effect from the bending and cross-linking of the alkyl chains. We quantified the modes of heat flow across the surfactant layer and found that the contribution of intramolecular bonded interaction was much higher than that of atomic translation and nonbonded interaction separately. By analysing the variation of bonded interaction contrition with chain length and stiffness, it is demonstrated that the increased thermal conductivities benefited from the enhanced thermal transfer through the covalent bonds of surfactant molecules. The results can provide insights into the design of thermally conductive surfactants.  相似文献   

19.
This Letter studies the size-dependent freezing of Co, Co-Ni, and Co-Cu clusters by using molecular dynamics with embedded atom method. Size effect occurs in these three types of clusters. The clusters with large sizes always freeze to form their bulk-like structures. However, the frozen structures for small sizes are generally related to their compositions. The icosahedral clusters are formed for Co clusters (for ?3.2 nm diameter) and also for Co-Ni clusters but at a larger size range (for ?4.08 nm). Upon the Co-Cu clusters, decahedral structure is obtained for small size (for 2.47 nm). The released energy induced the structural transformation plays a key role in the frozen structures. These results indicate that the preformed clusters with special structures can be tuned by controlling their compositions and sizes.  相似文献   

20.
在密度泛函理论耦合超软贋势第一性原理的平台上,研究了甲烷在Si(111)表面的物理吸附特性。通过建立硅晶胞的不同吸附位置(top、bridge、fcc)模型,对比分析了甲烷在相应位置吸附界面变化的键结构、吸附能和态密度,获得了相应吸附点的吸附特征。对比分析的结果表明,甲烷只有在top位置物理吸附状态较为理想。分析态密度、键长及键角等数据揭示top位甲烷吸附对体系硅晶胞有很大的影响,其体系的键能最低,即此时体系结构最稳定。本文所得研究成果可用于Si表面对甲烷气体的敏感性分析及气体传感器领域。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号