共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of Ba(La)TiO3 doping on the structure and magnetotransport properties of La2/3Sr1/3MnO3(LSMO)/xBa(La)TiO3 (x=0.0, 1.0, 5.0 mol%) have been investigated. The X-ray diffraction patterns and microstructural analysis show that BaTiO3 and LSMO phases exist independently in BaTiO3-doped composites. The metal-insulator transition temperature (TMI) decreases whereas the maximum resistivity increases very quickly by the increase of BaTiO3 doping level. The partial substitution of Ba by La(0.35 mol%) results in a decrease in resistivity of LSMO/xBa(La)TiO3 composites. Magnetoresistance of BaTiO3-doped composites decreases monotonously in the temperature range 200-400 K in a magnetic field of 5 T, which is completely different from that of LSMO compound. The value of MR decreases at low field (H<1 T) and increases at high fields (H>1 T) with increasing the BaTiO3 doping level at low temperatures below 280 K. These investigations reveal that the magnetotransport properties of LSMO/xBa(La)TiO3 composites are dominated by spin-dependent scattering and tunneling effect at the LSMO/BaTiO3/LSMO magnetic tunnel junction. 相似文献
2.
Z.F. Zi Y.P. Sun X.B. Zhu J.M. Dai 《Journal of magnetism and magnetic materials》2009,321(15):2378-2381
La0.7Sr0.3MnO3 nanoparticles were prepared by a simple chemical coprecipitation route. Structural, magnetoresistance (MR), and magnetic properties were investigated. Rietveld refinement of X-ray powder diffraction result shows that the sample is single-phase with the space group of R3¯C. The result of field-emission scanning electronic microscopy shows that most of the grain sizes are distributed from 50 to 200 nm. The composition determined by energy-dispersive spectroscopy is the stoichiometry of La0.7Sr0.3MnO3. The ferromagnetic to paramagnetic transition is sharp with Curie temperature TC=367 K, which further confirms that the sample is single-phase. The steep change in MR at low fields is attributed to the alignment of the magnetization, while the high-field MR is due to the grain boundary effect. 相似文献
3.
4.
The effect of grain size on structural, magnetic and transport properties in electron-doped manganites La0.9Te0.1MnO3 has been investigated. All samples show a rhombohedral structure with the space group at room temperature. The Mn-O-Mn bond angle decreases and the Mn-O bond length increases with the increase of grain size. All samples undergo paramagnetic (PM)-ferromagnetic (FM) phase transitions and the interesting phenomenon that both magnetization and the Curie temperature TC decrease with increasing grain size is observed, which is suggested to mainly originate from the increase of the Mn-O bond length dMn-O. Additionally, ρ obviously increases with decreasing grain size due to the increase of both the height and width of tunneling barriers with decreasing grain size. The results indicate that both the intrinsic colossal magnetoresistance and the extrinsic interfacial magnetoresistance can be effectively tuned in La0.9Te0.1MnO3 by changing grain size. 相似文献
5.
B.M Nagabhushana R.P. Sreekanth Chakradhar C. Shivakumara 《Solid State Communications》2005,136(7):427-432
Nanocrystalline La1−xBaxMnO3 (0.0≤x≤0.3) manganites have been prepared by a simple and instantaneous solution combustion method, which is a low temperature initiated synthetic route to obtain fine-grained powders with relatively high surface area. The phase purity and crystal structure of the combustion products are carried out by powder X-ray diffraction. The as-made nanopowders are in cubic phase. On calcination to 900 °C, barium doped manganites retain cubic phase, whereas barium free manganite transformed to rhombohedral phase. The scanning electron microscope (SEM) results revealed that the combustion-derived compounds are agglomerated with fine primary particles. The doped manganites have surface area in the range 24-44 m2/g. The surface area of the manganites increases with barium content, whereas it decreases on calcination. Both undoped and doped lanthanum manganites show two active IR vibrational modes at 400 and 600 cm−1. The low temperature resistivity measurements have been carried out by four-probe method down to 77 K. All the samples exhibit metal-insulator behaviour and metal-insulator transition temperature (TM-I) in the range 184-228 K and it is interesting to note that, as the barium content increases the TM-I shifts to lower temperature side. The maximum TM-I of 228 K is observed for La0.9Ba0.1MnO3 sample. 相似文献
6.
Amar Nath Vladimir Chechersky Robert Butterick Jr.III Steve Preite 《Solid State Communications》2006,138(5):224-228
The magnetic behavior of the Sr0.3 manganite is studied using a local microprobe, 57Co. In contrast with Ca substituted manganites, a much larger fraction of the material exhibits short-range order with superparamagnetic-like behavior even at 80 K. The differences in behavior are attributed to the large mismatch between the ionic radii of La+3 and the divalent substituent Sr+2, which introduces anharmonicity in local vibrations. In common with all other compounds exhibiting negative bulk magnetoresistivity, the Sr0.3 compound also exhibits very marked softening of lattice as one approaches Tc from below. Application of an external magnetic field results in coalescing of nanosized magnetic clusters to form larger ones with better alignment of spins. 相似文献
7.
Y.H. Sun Y.G. ZhaoX.L. Zhang S.N. GaoP.L. Lang X.P. ZhangM.H. Zhu 《Journal of magnetism and magnetic materials》2007
The electronic transport behavior of La0.67Sr0.33MnO3 epitaxial thin films with different thicknesses has been investigated under various applied DC currents. The 20 and 70 nm thick films show a giant negative electroresistance (ER). In contrast, the films with 100 nm thickness show unusual giant positive ER, which can reach 30% with the current density of 1.8×108 A/cm2 at room temperature. It is interesting that the electric current can also change the magnetoresistance of the films. The results were explained by considering the spin polarized current induced increase of ferromagnetic metallic phase and current-induced lattice distortion via electron wind force under high current density. 相似文献
8.
C.S. Xiong Y. Zeng J. Zhang L. Zhang X.W. Cheng L.J. Li 《Physica B: Condensed Matter》2008,403(18):3266-3270
Composite samples (1−x)La0.7Ca0.2Sr0.1MnO3(LCSMO)+x(ZnO) with different ZnO doping levels x have been investigated systematically. The structure and morphology of the composites have been studied by the X-ray diffraction (XRD) and scanning electronic microscopy (SEM). The XRD and SEM results indicate that no reaction occurs between LCSMO and ZnO grains, and that ZnO segregates mostly at the grain boundaries of LCSMO. The magnetic properties reveal that the ferromagnetic order of LCSMO is weakened by addition of ZnO. The results also show that ZnO has a direct effect on the resistance of LCSMO/ZnO composites, especially on the low-temperature resistance. With increase of the ZnO doping level, TP shifts to a lower temperature and the resistance increases. It is interesting to note that an enhanced magnetoresisitance (MR) effect for the composites is found over a wide temperature range from low temperature to room temperature in an applied magnetic field of 3 kOe. The maximum MR appears at x=0.1. The low field magnetoresistance (LFMR) results from spin-polarized tunneling. However, around room temperature, the enhanced MR of the composites is caused by magnetic disorder. 相似文献
9.
Xuebin Zhu Hechang Lei Xiangde Zhu Gang Li Wenhai Song Yuping Sun Shixue Dou 《Journal of magnetism and magnetic materials》2009,321(13):2009-2014
Grain size effects on magnetic and transport properties for heavily Sr-doped A-type antiferromagnetic La0.4Sr0.6MnO3 ceramics were studied. It was observed that with decrease in grain size, surface ferromagnetism could be introduced due to bond-breaking at surfaces. With decrease in grain size, the surface ferromagnetism was enhanced, and the phase transition order distinguished from the Arrott plot was a second one. The surface-induced ferromagnetism was insulating as judged from transport properties. With decrease in grain size, magnetoresistance was largely improved for both high magnetic and low magnetic fields. Under a 500 Oe magnetic field, the magnetoresistance is improved from 0.2%, 0.1%, 0.03% and 0.02% for the sample with grain size of 150 nm at 10, 100, 200 and 300 K, respectively, to 3%, 2.3%, 0.43% and 0.12% for the sample with grain size of 20 nm at 10, 100, 200 and 300 K. It was interesting to find that large magnetoresistance could be induced due to the surface ferromagnetism in A-type antiferromagnetic La0.4Sr0.6MnO3 nanoparticles, which suggested that it was possible to search for manganites with relatively high low-field magnetoresistance in nanostructured A-type antiferromagnetic materials. 相似文献
10.
Perfect epitaxial growth of La0.67Ca0.33MnO3 (LCMO) thin film has been achieved on (1 0 0) LaAlO3 (LAO) single crystal substrate by radio frequency sputtering method. X-ray diffraction (XRD) and electron diffraction analysis indicates that La0.67Ca0.33MnO3 film grows epitaxially on LaAlO3 along [1 0 0] direction of the substrate. The resistivity variation with temperature of the film shows a sharp metal to semiconductor transition peak around 253 K, which is close to that of the target. The magnetoresistance (MR) also reveals high quality epitaxy film characteristic at low temperatures and near the metal to semiconductor transition temperature. 相似文献
11.
Yuchun Feng 《Journal of magnetism and magnetic materials》2010,322(18):2675-6451
The La0.8Sr0.2MnO3/ZnO heterostructures with different thicknesses of ZnO films are fabricated by using RF magnetron sputtering technique. The heterojunctions exhibit excellent rectifying properties at 300 K. At low temperatures the temperature dependent junction resistance exhibits a metal-insulator transition like behavior. A magnetic field strongly impacts on electrical characteristics of La0.8Sr0.2MnO3/ZnO p-n junctions, i.e., depressing the junction resistance greatly and driving the metal-insulator transition temperature (TMI) towards higher temperatures. Large magnetoresistance is observed below TMI, and it increases with increasing magnetic field and almost saturates at 5 T, i.e., above −90% at 100 K and 5 T. 相似文献
12.
The surface layer effects on transport in epitaxial La2/3Ca1/3MnO3 thin films are studied. It was found that the two-probe resistance is nonlinear which is enhanced with decreasing temperature. Similar to the resistance of intrinsic La2/3Ca1/3MnO3 thin films reported in the literature, the apparent dynamic contact resistance behaves semiconducting at high temperatures, passes through a peak, and displays a metallic behavior. At lowest temperatures, the curve of the contact resistance versus temperature shows a little upturn. The temperature dependent work function difference between the surface layer and the thin film underneath, together with the tunneling process across either the resulting charge depleted layer or the semiconducting surface layer is used to explain our observations. 相似文献
13.
Z. Klencsár Z. Németh E. Kuzmann Z. Homonnay A. Vértes J. Hakl K. Vad S. Mészáros A. Simopoulos E. Devlin G. Kallias J.M. Grenéche Á. Cziráki S.K. De 《Journal of magnetism and magnetic materials》2008
La0.8Sr0.2Co1−xFexO3 (x=0.15, 0.2, 0.3) samples were studied by means of AC magnetic susceptibility, magnetization, magnetoresistance and 57Fe Mössbauer spectrometry. Iron was found to take on a high spin 3d5−α electronic state in each of the samples, where α refers to a partly delocalized 3d electron. The compounds were found to exhibit a spin-cluster glass transition with a common transition temperature of ∼53 K. The spin-cluster glass transition is visualized in the 57Fe Mössbauer spectra as the slowing down of magnetic relaxation below ∼70 K, thereby showing that iron takes part in the formation of the glassy magnetic phase. The paramagnetic-like phase found at higher temperatures is identified below Tc≈195 K as being composed of weakly interacting, magnetically ordered nanosized clusters of magnetic ions in part with a magnetic moment oriented opposite to the net magnetic moment of the cluster. For each of the samples a considerable low-temperature negative magnetoresistance was found, whose magnitude in the studied range decreases with increasing iron concentration. The observed results obtained on the present compounds are qualitatively explained assuming that the absolute strengths of magnetic exchange interactions are subject to the relation ∣JCo–Co∣<∣JFe–Co∣<∣JFe–Fe∣. 相似文献
14.
X.H. Zhang Z.Q. Li W. Song P. Wu H.L. Bai E.Y. Jiang 《Solid State Communications》2005,135(6):356-360
The structural and magnetic properties of Pr0.75Na0.25MnO3 have been investigated experimentally. At room temperature, the compound shows paramagnetic characteristic. Along with decreasing temperature, a peak appears in the magnetization versus temperature curve around 220 K. To clarify whether this peak is associated with the ordering arrangement of Mn3+ and Mn4+ ions, electron diffraction experiments were carried out below and above 220 K respectively. Only basic Brag diffraction spots can be observed at high temperatures, however, superlattice diffraction appears below 220 K. This provides direct evidence for the existence of charge ordering in Pr0.75Na0.25MnO3. We find the Mn3+ and Mn4+ cations form zigzag chains in a-c plane by analyzing the diffraction patterns. Combining with the magnetization measurements and the results of electron spin resonance, we confirm the antiferromagnetic phase and ferromagnetic component coexist in Pr0.75Na0.25MnO3 below 120 K. 相似文献
15.
The magnetic and transport properties of La1−xCaxMnO3 (0≤x<0.4) have been systematically studied. The magnetoresistance (MR) maximum appears at x=0.2-0.25 and the temperature dependence of MR for x>0.25 shows a much broader profile than that of samples for x=0.2-0.25. Based on a scenario in which there is a short-range charge ordering (CO) state coexisting in the ferromagnetic state matrix for x>0.25, and the least or even no short-range CO state exists in samples for x=0.2-0.25, the above observations can be understood. 相似文献
16.
X.L. Zhang Y.G. ZhaoY.H. Sun S.N. GaoP.L. Lang X.P. ZhangM.H. Zhu 《Journal of magnetism and magnetic materials》2006
The electroresistance (ER) of La0.67Ca0.33MnO3 (LCMO) epitaxial thin films with different thicknesses was studied. For the 110 nm thick LCMO film, its ER shows a maximum at Tp, where the resistance shows a peak, and decreases to zero at lower temperatures. While for the 30 nm thick LCMO film, its ER is remarkable in a wide temperature range. Another interesting observation in this work is that the electric current can tune the magnetoresistance of the ultrathin LCMO thin film. The results were discussed by considering the coexistence of ferromagnetic metallic phase with the charge ordered phase, and the variation of the phase separation with film thickness and electric current. This work also demonstrates that electric current can tune the magnetoresistance of the manganites, which is helpful for their applications. 相似文献
17.
Yuui Yokota Jun-ichi Shimoyama Tetsuro Ogata Shigeru Horii Kohji Kishio 《Solid State Communications》2007,142(8):429-433
We have examined the effects of excess oxygen on the magnetization, electrical transport properties and crystal structure of La0.95Sr0.05MnOy. An antiferromagnetic insulator phase confirmed in the as-grown crystal at low temperatures changed to a ferromagnetic insulator phase after the introduction of excess oxygen. The ferromagnetic transition temperature, TC, systematically increased with increasing oxygen content, y, due to an increase in the mean valence of manganese. However, the TC of crystals with excess oxygen was lower than that of the La1−xSrxMnO3.00 having identical manganese valence. This is considered to be a result of the competition among the mean valence of manganese, the concentration of cation vacancies, and the mean ionic radius of cations at the A-site. 相似文献
18.
T. Govardhan Reddy P. Yadagiri Reddy Ajay Gupta K. Rama Reddy 《Solid State Communications》2005,133(2):77-81
The electrical and magnetic transport properties of the La0.67−xEuxCa0.33MnO3 system exhibit lowering of insulator to metal and paramagnetic to ferromagnetic transition temperature (TC) with the increase of Eu concentration in addition to possessing CMR property. The temperature variation of electrical resistivity and magnetic susceptibility for x=0.21 is found to have two distinct regions in the paramagnetic state for T>TP; one with the localization of lattice polaron in the high-temperature region (T>1.5TP) satisfying the dynamics of variable range hopping (VRH) model and the other being the combination of the spin and lattice polarons in the region TP<T<1.5TP. The resistivity variation with temperature and magnetic field, the cusp in the resistivity peak and CMR phenomenon are interpreted in terms of coexistence of spin and lattice small polarons in the intermediate region (TP<T<1.5TP). The spin polaron energy in the La0.46Eu0.21Ca0.33MnO3 system is estimated to be 106.73±0.90 meV and this energy decreases with the increase of external magnetic field. The MR ratio is maximal with a value of 99.99% around the transition temperature and this maximum persists till T→0 K, at the field of 8 T. 相似文献
19.
La0.8Sr0.2MnO3 (LSMO) thin films were fabricated on alumina substrates by an improved sol-gel dip-coating process. It was found that multiple dip-coating process could not be performed until the pre-firing temperature reached 600 °C. Different amounts of LSMO powders were added to precursor solution with an aim to avoid cracks in LSMO thin films during calcining caused by the shrinkage mismatch between the film and the substrate. The structure and surface morphology of the films prepared from precursors with and without LSMO powders were characterized using X-ray diffraction (XRD) and scanning electron microscopy (SEM). It was found that the addition of 56.4 wt.% LSMO powders into the sol-gel precursor solution significantly modified the microstructure of films. A single LSMO perovskite phase was obtained on alumina substrate after calcining at 800 °C for 4 h by the improved sol-gel method. The sheet resistance of the films prepared with different processing parameters was measured by four-point dc method. Results indicated that the sheet resistance of films decreased with increasing the number of coating applications and the amount of LSMO powders. 相似文献
20.
T. Kasama M.S. Moreno R.E. Dunin-Borkowski S.B. Newcomb J. Guimpel P.A. Midgley 《Applied Surface Science》2006,252(11):3977-3983
Off-axis electron holography is used to characterize the magnetic properties of a GdBa2Cu3O7/La0.75Sr0.25MnO3 superlattice below the Curie temperature of the manganite layers, in both cross-sectional and plan-view geometry. The samples were prepared for electron microscopy using focused ion beam milling. Differences between the magnetic properties of successive manganite layers are observed in the cross-sectional sample. Magnetic ripple contrast and weakly magnetic regions are observed in plan-view geometry. Although the results may be affected by sample preparation for electron microscopy, the observed differences between the magnetic properties of the manganite layers are consistent between the different samples examined. 相似文献