首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Silicon dioxide (SiO2) layers with a thickness more than 10 nm can be formed at ∼120 °C by direct Si oxidation with nitric acid (HNO3). Si is initially immersed in 40 wt.% HNO3 at the boiling temperature of 108 °C, which forms a ∼1 nm SiO2 layer, and the immersion is continued after reaching the azeotropic point (i.e., 68 wt.% HNO3 at 121 °C), resulting in an increase in the SiO2 thickness. The nitric acid oxidation rates are the same for (1 1 1) and (1 0 0) orientations, and n-type and p-type Si wafers. The oxidation rate is constant at least up to 15 nm SiO2 thickness (i.e., 1.5 nm/h for single crystalline Si and 3.4 nm/h for polycrystalline Si (poly-Si)), indicating that the interfacial reaction is the rate-determining step. SiO2 layers with a uniform thickness are formed even on a rough surface of poly-Si thin film.  相似文献   

2.
We have developed low temperature formation methods of SiO2/Si and SiO2/SiC structures by use of nitric acid, i.e., nitric acid oxidation of Si (or SiC) (NAOS) methods. By use of the azeotropic NAOS method (i.e., immersion in 68 wt% HNO3 aqueous solutions at 120 °C), an ultrathin (i.e., 1.3-1.4 nm) SiO2 layer with a low leakage current density can be formed on Si. The leakage current density can be further decreased by post-metallization anneal (PMA) at 200 °C in hydrogen atmosphere, and consequently the leakage current density at the gate bias voltage of 1 V becomes 1/4-1/20 of that of an ultrathin (i.e., 1.5 nm) thermal oxide layer usually formed at temperatures between 800 and 900 °C. The low leakage current density is attributable to (i) low interface state density, (ii) low SiO2 gap-state density, and (iii) high band discontinuity energy at the SiO2/Si interface arising from the high atomic density of the NAOS SiO2 layer.For the formation of a relatively thick (i.e., ≥10 nm) SiO2 layer, we have developed the two-step NAOS method in which the initial and subsequent oxidation is performed by immersion in ∼40 wt% HNO3 and azeotropic HNO3 aqueous solutions, respectively. In this case, the SiO2 formation rate does not depend on the Si surface orientation. Using the two-step NAOS method, a uniform thickness SiO2 layer can be formed even on the rough surface of poly-crystalline Si thin films. The atomic density of the two-step NAOS SiO2 layer is slightly higher than that for thermal oxide. When PMA at 250 °C in hydrogen is performed on the two-step NAOS SiO2 layer, the current-voltage and capacitance-voltage characteristics become as good as those for thermal oxide formed at 900 °C.A relatively thick (i.e., ≥10 nm) SiO2 layer can also be formed on SiC at 120 °C by use of the two-step NAOS method. With no treatment before the NAOS method, the leakage current density is very high, but by heat treatment at 400 °C in pure hydrogen, the leakage current density is decreased by approximately seven orders of magnitude. The hydrogen treatment greatly smoothens the SiC surface, and the subsequent NAOS method results in the formation of an atomically smooth SiO2/SiC interface and a uniform thickness SiO2.  相似文献   

3.
We have developed low temperature formation methods of SiO2 layers which are applicable to gate oxide layers in thin film transistors (TFT) by use of nitric acid (HNO3). Thick (>10 nm) SiO2 layers with good thickness uniformity (i.e., ±4%) can be formed on 32 cm × 40 cm substrates by the two-step nitric acid oxidation method in which initial and subsequent oxidation is performed using 40 and 68 wt% (azeotropic mixture) HNO3 aqueous solutions, respectively. The nitric acid oxidation of polycrystalline Si (poly-Si) thin films greatly decreases the height of ridge structure present on the poly-Si surfaces. When poly-Si thin films on 32 cm × 40 cm glass substrates are oxidized at azeotropic point (i.e., 68 wt% HNO3 aqueous solutions at 121 °C), ultrathin (i.e., 1.1 nm) SiO2 layers with a good thickness uniformity (±0.05 nm) are formed on the poly-Si surfaces. When SiO2/Si structure fabricated using plasma-enhanced chemical vapor deposition is immersed in 68 wt% HNO3, oxide fixed charge density is greatly decreased, and interface states are eliminated. The fixed charge density is further decreased by heat treatments at 200 °C, and consequently, capacitance-voltage characteristics which are as good as those of thermal SiO2/Si structure are achieved.  相似文献   

4.
3C-SiC(0 0 1) surfaces are considerably rough with the roughness root mean square value (Rms) of 1.3 nm, but the surfaces become considerably smooth (i.e., Rms of 0.5 nm) by heat treatment in pure hydrogen at 400 °C. Two-step nitric acid (HNO3) oxidation (i.e., immersion in ∼40 wt% HNO3 followed by that in 68 wt% HNO3) performed after the hydrogen treatment can oxidize 3C-SiC at extremely low temperature of ∼120 °C, forming thick SiO2 (e.g., 21 nm) layers. With no hydrogen treatment, the leakage current density of the 〈Al/SiO2/3C-SiC〉 metal-oxide-semiconductor (MOS) diodes is high, while that for the MOS diodes with the hydrogen treatment is considerably low (e.g., ∼10−6 A/cm2 at the forward gate bias of 1 V) due to the formation of uniform thickness SiO2 layers. The MOS diodes with the hydrogen treatment show capacitance-voltage curves with accumulation, depletion, and deep-depletion characteristics.  相似文献   

5.
Thick (i.e., ∼10 nm) SiO2/Si structure has been formed at 121 °C by immersion of Si in relatively low concentration HNO3 followed by that in 68 wt.% HNO3 (i.e., two-step nitric acid (HNO3) oxidation method of Si, NAOS) and spectroscopic properties and electrical characteristics of the NAOS SiO2 layers are investigated. The SiO2 thickness strongly depends on the concentration of HNO3 aqueous solutions employed in the initial oxidation, and it becomes the largest at the HNO3 concentration of 40 wt.%. The MOS diodes with the ∼9 nm SiO2 layer formed by the NAOS method possess a relatively low leakage current density (e.g., 10−8 A/cm2 at the forward bias of 1 V) and it is further decreased by more than one order of magnitude by post-metallization annealing (PMA) in hydrogen at 250 °C. The good leakage characteristic is attributable to atomically flat SiO2/Si interfaces and high atomic density of 2.30-2.32 × 1022 atoms/cm3 of the NAOS SiO2 layers. High-density interface states are present in as-prepared SiO2 layers and they are eliminated by PMA in hydrogen.  相似文献   

6.
A relatively thick (i.e., ∼9 nm) SiO2 layer can be formed by oxidation of Si with nitric acid (HNO3) vapor below 500 °C. In spite of the low temperature formation, the leakage current density flowing through the SiO2 layer is considerably low, and it follows the Fowler-Nordheim mechanism. From the Fowler-Nordheim plots, the conduction band offset energy at the SiO2/Si interface is determined to be 2.57 and 2.21 eV for HNO3 vapor oxidation at 500 and 350 °C, respectively. From X-ray photoelectron spectroscopy measurements, the valence band offset energy is estimated to be 4.80 and 4.48 eV, respectively, for 500 and 350 °C oxidation. The band-gap energy of the SiO2 layer formed at 500 °C (8.39 eV) is 0.68 eV larger than that formed at 350 °C. The higher band-gap energy for 500 °C oxidation is mainly attributable to the higher atomic density of the SiO2 layer of 2.46 × 1022/cm3. Another reason may be the absence of SiO2 trap-states.  相似文献   

7.
We have developed the advanced nitric acid oxidation of Si (NAOS) method to form relatively thick (5-10 nm) SiO2/Si structure with good electrical characteristics. This method simply involves immersion of Si in 68 wt% nitric acid aqueous solutions at 120 °C with polysilazane films. Fourier transform infrared absorption (FT-IR) measurements show that the atomic density of the NAOS SiO2 layer is considerably high even without post-oxidation anneal (POA), i.e., 2.28 × 1022 atoms/cm2, and it increases by POA at 400 °C in wet-oxygen (2.32 × 1022 atoms/cm2) or dry-oxygen (2.30 × 1022 atoms/cm2). The leakage current density is considerably low (e.g., 10−5 A/cm2 at 8 MV/cm) and it is greatly decreased (10−8 A/cm2 at 8 MV/cm) by POA at 400 °C in wet-oxygen. POA in wet-oxygen increases the atomic density of the SiO2 layer, and decreases the density of oxide fixed positive charges.  相似文献   

8.
The SiC/SiO2 deposition was performed to improve the oxidation resistive properties of carbon nanofiber (CNF) from electrospinning at elevated temperatures through sol-gel process. The stabilized polyacrylonitrile (PAN) fibers were coated with SiO2 followed by heat treatment up to 1000 and 1400 °C in an inert argon atmosphere. The chemical compositions of the CNFs surface heat-treated were characterized as C, Si and O existing as SiC and SiO2 compounds on the surface. The uniform and continuous coating improved the oxidation resistance of the carbon nanofibers. The residual weight of the composite was 70-80% and mixture of SiC, SiO2 and some residual carbon after exposure to air at 1000 °C.  相似文献   

9.
The interaction of cobalt atoms with an oxidized Si(1 0 0)2 × 1 surface was studied by photoelectron spectroscopy with synchrotron radiation at room and elevated temperatures. The SiOx layer grown in situ on the crystal surface was ∼0.3 nm thick, and the amount of deposited cobalt was varied within eight atomic layers. It was found that Co atoms could penetrate under the SiOx layer even at room temperature in the initial growth. As the Co amount increased, a ternary Co-O-Si phase was formed at the interface, followed by a Co-Si solid solution. Silicide synthesis associated with the decomposition of these phases started under the SiOx layer at ∼250 °C, producing cobalt disilicide with a stable CaF2-type of structure.  相似文献   

10.
Thermal oxidation temperature dependence of 4H-SiC MOS interface   总被引:1,自引:0,他引:1  
The thermal oxidation temperature dependence of 4H-silicon carbide (SiC) is systematically investigated using X-ray photoelectron spectroscopy (XPS) and capacitance-voltage (C-V) measurements. When SiC is thermally oxidized, silicon oxycarbides (SiCxOy) are first grown and then silicon dioxide (SiO2) is grown. It is identified by XPS that the SiO2 films fall into two categories, called SiC-oxidized SiO2 and Si-oxidized SiO2 in this paper. The products depend on thermal oxidation temperature. The critical temperature is between 1200 and 1300 °C. The interface trap density (Dit) of the sample possessing Si-oxidized SiO2, at thermal oxidation temperature of 1300 °C, is lower than SiC-oxidized SiO2 at and below 1200 °C, suggesting that a decrease of the C component in SiO2 film and SiO2/SiC interface by higher oxidation temperature improves the metal-oxide-semiconductor (MOS) characteristics.  相似文献   

11.
We focused on the effects of the inorganic acid HNO3 on the gas-sensing properties of nanometer SnO2 and prepared the powders via a dissolution-pyrolysis method. Furthermore, the powders were characterized by means of X-ray diffraction (XRD), scanning electron microscope (SEM), field emission scanning electron microscopy (FESEM) and energy-dispersive X-ray spectra (EDS). Several aspects were surveyed, including the calcining temperature, concentration of nitric acid and the working temperature. The results showed that the gas response of 3 wt% HNO3-doped SnO2 powders (calcined at 500 °C) to 10 ppm Cl2 reached 316.5, at the working temperature 175 °C. Compared with pure SnO2, appropriate HNO3 could increase the gas sensitivity to Cl2 gas more significantly.  相似文献   

12.
Xin Jiang  Hui Deng 《Applied Surface Science》2011,257(24):10883-10887
Au-CeO2/SiO2 was prepared via adsorbed-layer reactor technique combined with alcohol-thermal treatment. The catalytic performance in complete oxidation of benzene was investigated. TEM, Raman characterization showed that Au particles grew up obviously during alcohol-thermal process, while CeO2 particles maintained 4 nm in diameter. The content of oxygen vacancies and adsorbed oxygen species on catalysts surface increased apparently. Alcohol-thermally treated Au-CeO2/SiO2 and CeO2/SiO2 showed similar change in catalytic performance, and were much superior to calcined CeO2/SiO2. Of alcohol-thermally treated and calcined CeO2/SiO2, initial temperatures of the reaction were 80 °C and 150 °C, respectively. The benzene conversions reached 85% and 40% at 300 °C.  相似文献   

13.
The oxidation process on silicon carbide (SiC) surfaces is important for wide bandgap power semiconductor devices. We investigated SiC oxidation using supercritical water (SCW) at high pressure and temperature and found that a SiC surface can be easily oxidized at low temperature. The oxidation rate is 10 nm/min at 400 °C and 25 MPa, equal to that of conventional thermal dry oxidation at 1200 °C. Low-temperature oxidation should contribute to improved performance in future SiC devices. Moreover, we found that SCW oxidation at 400 °C forms a much smoother SiO2/SiC interface than that obtained by conventional thermal dry oxidation. A higher oxidation rate and smaller microroughness are achieved at a lower oxidation temperature owing to the high density of oxidizers under SCW conditions.  相似文献   

14.
In this work, we report on two properties of the oxidation of tantalum silicide (Ta2Si) on SiC substrates making this material of interest as insulator for many wide bandgap or compound semiconductors. The relatively high oxidation rate of tantalum silicide to form high-k insulator layers and its ability for being oxidized in diluted N2O ambient in a manner similar to the oxidation in O2 are investigated. Metal-insulator-semiconductor capacitors have been used to establish the actual applicability and constrain of the high-k insulator depending on the oxidation conditions. At 1050 °C, the reduction of the oxidation time from 1 h to 5 min affects primordially the SiOx interfacial layer formed between the bulk insulator and the substrate. This interfacial layer strongly influences the metal-insulator-semiconductor performances of the oxidized Ta2Si layer. The bulk insulator basically remains unaffected although some structural differences arise when the oxidation is performed in N2O.  相似文献   

15.
The growth and thermal stability of ultrathin ZrO2 films on the Si-rich SiC(0 0 0 1)-(3 × 3) surface have been explored using photoelectron spectroscopy (PES) and X-ray absorption spectroscopy (XAS). The films were grown in situ by chemical vapor deposition using the zirconium tetra tert-butoxide (ZTB) precursor. The O 1s XAS results show that growth at 400 °C yields tetragonal ZrO2. An interface is formed between the ZrO2 film and the SiC substrate. The interface contains Si in several chemically different states. This gives evidence for an interface that is much more complex than that formed upon oxidation with O2. Si in a 4+ oxidation state is detected in the near surface region. This shows that intermixing of SiO2 and ZrO2 occurs, possibly under the formation of silicate. The alignment of the ZrO2 and SiC band edges is discussed based on core level and valence PES spectra. Subsequent annealing of a deposited film was performed in order to study the thermal stability of the system. Annealing to 800 °C does not lead to decomposition of the tetragonal ZrO2 (t-ZrO2) but changes are observed within the interface region. After annealing to 1000 °C a laterally heterogeneous layer has formed. The decomposition of the film leads to regions with t-ZrO2 remnants, metallic Zr silicide and Si aggregates.  相似文献   

16.
Plasma electrolytic oxidation (PEO) of a ZC71/SiC/12p-T6 magnesium metal matrix composite (MMC) is investigated in relation to coating growth and corrosion behaviour. PEO treatment was undertaken at 350 mA cm−2 (rms) and 50 Hz with a square waveform in stirred 0.05 M Na2SiO3.5H2O/0.1 M KOH electrolyte. The findings revealed thick, dense oxide coatings, with an average hardness of 3.4 GPa, formed at an average rate of ∼1 μm min−1 for treatment times up to 100 min and ∼0.2 μm min−1 for later times. The coatings are composed mainly of MgO and Mg2SiO4, with an increased silicon content in the outer regions, constituting <10% of the coating thickness. SiC particles are incorporated into the coating, with formation of a silicon-rich layer at the particle/coating interface due to exposure to high temperatures during coating formation. The distribution of the particles in the coating indicated growth of new oxide at the metal/coating interface. The corrosion rate of the MMC in 3.5% NaCl is reduced by approximately two orders of magnitude by the PEO treatment.  相似文献   

17.
We have investigated the influence of the vacuum level upon the growth of carbon nanotubes (CNTs) on 6H-SiC () surface.CNTs of about 160 nm in length were formed densely and uniformly on the 6H-SiC surface during annealing at 1700 °C in a high vacuum (∼10−2 Pa). CNTs of about 1 μm in length were formed during annealing at 1700 °C in an ultra-high vacuum (∼10−7 Pa). However, CNTs were not formed and SiO2 layers were formed on the SiC surface at 1700 °C in air. It is found that longer CNTs can grow up in an ultra-high vacuum, moreover, a little aligned and low-density graphite layers, or carbon nanofibers can also grow up.  相似文献   

18.
In the paper, we present experimental results to enhance the understanding of Ti out-diffusion and oxidization in commercial poly-Pt/Ti/SiO2/Si wafers with perovskite oxide films deposited when heat-treated in flowing oxygen ambient. It indicates that when heat-treated at 550 and 600 °C, PtTi3+PtTi and PtTi are the reaction products from interfacial interaction, respectively; while heat-treated at 650 °C and above, the products become three layers of titanium oxides instead of the alloys. Confirmed to be rutile TiO2, the first two layers spaced by 65 nm encapsulate the Pt surface by the first layer with 60 nm thick forming at its surface and by the next layer with 35 nm thick inserting its original layer. In addition, the next layer is formed as a barrier to block up continuous diffusion paths of Ti, and thus results in the last layer of TiO2−x formed by the residual Ti oxidizing.  相似文献   

19.
We report on Si nanodot formation by chemical vapor deposition (CVD) of ultrathin films and following oxidation. The film growth was carried out by hot-filament assisted CVD of CH3SiH3 and Dy(DPM)3 gas jets at the substrate temperature of 600 °C. The transmission electron microscopy observation and X-ray photoelectron spectroscopy analysis indicated that ∼35 nm Dy-doped amorphous silicon oxycarbide (SiCxOy) films were grown on Si(1 0 0). The Dy concentration was 10-20% throughout the film. By further oxidation at 860 °C, the smooth amorphous film was changed to a rough structure composed of crystalline Si nanodots surrounded by heavily Dy-doped SiO2.  相似文献   

20.
A method for the formation of Au nanocrystal (nc) arrays embedded in an ultrathin SiO2 layer in one vacuum cycle is proposed. The method is based on the co-deposition in vacuum of ∼1 nm thick uniform Si-Au amorphous layer at a specific composition ratio by Pulsed Laser Deposition on the pre-oxidized Si(1 0 0) substrate, followed by its oxidation in the glow discharge oxygen plasma at room temperature, resulting in the precipitation of Au ncs at the bottom interface and/or at the surface of the forming SiO2 layer. The capping SiO2 layer is formed by the glow discharge plasma oxidation of further deposited ultrathin Si layer. Au ncs 2-5 nm in size and with the separation of ∼3-20 nm from each other segregate during the oxidation of Au-Si mixture as evidenced by transmission electron microscopy (TEM). The evolution of Au and Si chemical state upon each step of the SiO2:nc-Au nanocomposite structure formation is monitored in situ by X-ray photoelectron spectroscopy (XPS). The metrology of nanocomposite SiO2:nc-Au structures describing the space distribution of Au ncs as a function of Au/Si ratio is presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号