首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Density functional theory (DFT) slab calculations, mainly using the generalised gradient approximation, have been used to investigate the minimum energy structures of molecular SO2 and SO3 on Cu(1 1 1) and Ni(1 1 1) surfaces. On Ni(1 1 1) the optimal local adsorption structures are in close agreement with experimental results for both molecular species obtained using the X-ray standing wavefield technique, although for adsorbed SO2 the energetic difference between two alternative lateral positions of the lying-down molecule on the surface is marginally significant. On Cu(1 1 1) the results for adsorbed SO2, in particular, were sensitive to the DFT functional used in the calculations, but in all cases failed to reproduce the experimentally-established preference for adsorption with the molecular plane perpendicular to the surface. This result is discussed in the context of previously published DFT results for these species adsorbed on Cu(1 0 0). The optimal geometry found for SO3 on Cu(1 1 1) is similar to that on Ni(1 1 1), providing agreement with experiment regarding the molecular orientation but not the adsorption site.  相似文献   

2.
The growth mode and electronic structure of Au nano-clusters grown on NiO and TiO2 were analyzed by reflection high-energy electron diffraction, a field-emission type scanning electron microscope, medium energy ion scattering and photoelectron spectroscopy. Au was deposited on clean NiO(0 0 1)-1 × 1 and TiO2(1 1 0)-1 × 1 surfaces at room temperature with a Knudsen cell at a rate of 0.25-0.35 ML/min (1 ML = 1.39 × 1015 atoms/cm2:Au(1 1 1)). Initially two-dimensional (2D) islands with thickness of one Au-atom layer grow epitaxially on NiO(0 0 1) and then neighboring 2D-islands link each other to form three-dimensional (3D)-islands with the c-axis oriented to the [1 1 1] direction. The critical size to form 3D-islands is estimated to be about 5 nm2. The shape of the 3D-islands is well approximated by a partial sphere with a diameter d and height h ranging from 2.0 to 11.8 nm and from 0.95 to 4.2 nm, respectively for Au coverage from 0.13 to 4.6 ML. The valence band spectra show that the Au/NiO and Au/TiO2 surfaces have metallic characters for Au coverage above 0.9 ML. We observed Au 4f spectra and found no binding energy shift for Au/NiO but significant higher binding energy shifts for Au/TiO2 due to an electron charge transfer from Au to TiO2. The work function of Au/NiO(0 0 1) gradually increases with increase in Au coverage from 4.4 eV (NiO(0 0 1)) to 5.36 eV (Au(1 1 1)). In contrast, a small Au deposition(0.15 to 1.5 ML) on TiO2(1 1 0) leads to reduction of the work function, which is correlated with an electron charge transfer from Au to TiO2 substrate.  相似文献   

3.
Surface X-ray diffraction has been used to investigate the structure of TiO2(1 1 0)(3 × 1)-S. In concert with existing STM and photoemission data it is shown that on formation of a (3 × 1)-S overlayer, sulphur adsorbs in a position bridging 6-fold titanium atoms, and all bridging oxygens are lost. Sulphur adsorption gives rise to significant restructuring of the substrate, detected as deep as the fourth layer of the selvedge. The replacement of a bridging oxygen atom with sulphur gives rise to a significant motion of 6-fold co-ordinated titanium atoms away from the adsorbate, along with a concomitant rumpling of the second substrate layer.  相似文献   

4.
The effects of different oxygen species and vacancies on the adsorption and oxidation of formaldehyde over CeO2(1 1 1) surface were systematically investigated by using density functional theory (DFT) method. On the stoichiometric CeO2(1 1 1) surface, the C-H bond rupture barriers of chemisorbed formaldehyde are much higher than that of formaldehyde desorption. On the reduced CeO2(1 1 1) surface, the energy barriers of C-H bond ruptures are less than those on the stoichiometric CeO2(1 1 1) surface. If the C-H bond rupture occurs, CO and H2 form quickly with low energy barriers. When O2 adsorbs on the reduced (1 1 1) surface (O2/Ov species), the C-H bond rupture barriers of formaldehyde are greatly reduced in comparison with those on the stoichiometric CeO2(1 1 1) surface. If O2 adsorbs on oxygen vacancy at sub-layer surface, its oxidative roles on formaldehyde are much similar to that of O2/Ov species.  相似文献   

5.
Gian A. Rizzi 《Surface science》2006,600(16):3345-3351
Stoichiometric and highly-defective TiO2(1 1 0) surfaces (called as yellow and blue, respectively) were exposed to Mo(CO)6 vapours in UHV and in a reactive O2 atmosphere. In the case of yellow-TiO2, an O2 reactive atmosphere was necessary to obtain the Mo(CO)6 decomposition at 450 °C with deposition of MoOx nanostructures where, according to core level photoemission data, the Mo+4 state is predominant. In the case of blue-TiO2 it was possible to obtain Mo deposition both in UHV and in an O2 atmosphere. A high dose of Mo(CO)6 in UHV on blue-TiO2 allowed the deposition of a thick metallic Mo layer. An air treatment of this sample at 580 °C led to the elimination of Mo as MoO3 and to the formation of a transformed layer of stoichiometry of Ti(1−x)MoxO2 (where x is close to 0.1) which, according to photoelectron diffraction data, can be described as a substitutional near-surface alloy, where Mo+4 ions are embedded into the titania lattice. This embedding procedure results in a stabilization of the Mo+4 ions, which are capable to survive to air exposure for a rather long period of time. After exposure of the blue-TiO2(1 1 0) substrate to Mo(CO)6 vapours at 450 °C in an O2 atmosphere it was possible to obtain a MoO2 epitaxial ultrathin layer, whose photoelectron diffraction data demonstrate that is pseudomorphic to the substrate.  相似文献   

6.
High-resolution core-level photoemission and scanned-energy mode photoelectron diffraction (PhD) of the O 1s and N 1s states have been used to investigate the interaction of glycine with the rutile TiO2(1 1 0) surface. Whilst there is clear evidence for the presence of the zwitterion CH2COO with multilayer deposition, at low coverage only the deprotonated glycinate species, NH2CH2COO is present. Multiple-scattering simulations of the O 1s PhD data show the glycinate is bonded to the surface through the two carboxylate O atoms which occupy near-atop sites above the five-fold-coordinated surface Ti atoms, with a Ti-O bondlength of 2.12 ± 0.06 Å. Atomic hydrogen arising from the deprotonation is coadsorbed to form hydroxyl species at the bridging oxygen sites with an associated Ti-O bondlength of 2.01 ± 0.03 Å. Absence of any significant PhD modulations of the N 1s emission is consistent with the amino N atom not being involved in the surface bonding, unlike the case of glycinate on Cu(1 1 0) and Cu(1 0 0).  相似文献   

7.
Dissociative chemisorption of O2 on Cu(1 0 0), S/Cu(1 0 0) and Ag/Cu(1 0 0) surface alloy has been investigated by Auger electron spectroscopy (AES). A strong reduction in the initial O2 chemisorption probability (S0) from 0.05 to 7.4 × 10−3 is observed already at an Ag coverage of 0.02 ML. Further Ag deposition results only in a moderate decrease in S0. Similar inhibition of O2 dissociation is observed on S/Cu(1 0 0). It is concluded that at very low Ag coverages, the reduced reactivity of Ag/Cu(1 0 0) towards O2 dissociation is primarily due to the steric blocking of the surface defects and that any electronic effects are only secondary and present only at higher Ag coverages.  相似文献   

8.
A confocal Raman investigation of Pb1 − xLaxTi1 − x/4O3 (PLT) thin films grown by RF magnetron sputtering on PbOx/Pt/Ti/SiO2/Si substrates with an intermediate LaSrCoO3 (LSCO) layer was performed. The influence of the LaSrCoO3 buffer layer was analyzed taking advantage of the observed Raman spectral band variation, which varied according to different manufacturing procedures. In the presence of a LSCO layer, the A1(1TO) Raman mode, which was indicative of tetragonal distortion, was pronouncedly enhanced, and a slight deviation from the (0 0 1) plane of the film was observed from the angular dependence of the polarized Raman spectral intensity. Furthermore, the spectral band variation as well as the residual stress along the in-depth direction was measured in the film from cross-sectional spectral line scans. This latter measurement showed a relaxation of the lattice mismatch in the presence of LSCO and PbO layers.  相似文献   

9.
Results of an STM study of dissociative GeH4 adsorption on Si(1 1 1)-(7 × 7) at 300 K show that GeH4 adsorbs under scission of two Ge-H bonds according to GeH4(g) + 4db → GeH2(ad) + 2H(ad). GeH2 binds to two adatom dangling bonds in a bridged configuration, while the two released hydrogen atoms saturate two additional dangling bonds. The GeH4 sticking coefficient under these conditions is 1.2 × 10−6, one order of magnitude smaller than for SiH4.  相似文献   

10.
We describe the electrochemical preparation of an ultrathin copper sulfide film on Au(1 1 1) and its structural characterization by in situ STM. The first step, underpotential deposition of a Cu submonolayer from CuSO4/H2SO4 solution, is followed by two electrolyte exchanges for (i) Cu-free (blank) H2SO4 solution and (ii) NaOH/Na2S solution. The well-known (√3 × √3)R30° structure of the upd Cu layer is stable in the blank electrolyte for at least 2 h. After exposure to bisulfide, the Cu layer contracts and forms two-dimensional islands of two distinct ordered surface phases, i.e. a rectangular and, at higher potentials, a hexagonal phase, with Cu-free Au(1 1 1) regions between them, the latter exhibiting the characteristic (√3 × √3)R30°-S adlayer structure. Potential changes lead to a complex phase behaviour including HS ? Sx oxidation/reduction and, at strongly anodic potentials, dissolution of the Cu adlayer.  相似文献   

11.
Using infrared reflection absorption spectroscopy (IRRAS) and temperature programmed desorption (TPD), we investigated carbon monoxide (CO) adsorption and desorption behaviors on atomic checkerboard structures of Cu and Pd formed by Pd vacuum deposition at various temperatures of Cu(1 0 0). The 0.15-nm-thick Pd deposition onto a clean Cu(1 0 0) surface at room temperature (RT) showed a clear c(2 × 2) low-energy electron diffraction (LEED) pattern, i.e. Cu(1 0 0)-c(2 × 2)-Pd. The RT-CO exposure to the c(2 × 2) surfaces resulted in IRRAS absorption caused by CO adsorbed on the on-top sites of Pd. The LEED patterns of the Pd-deposited Cu(1 0 0) at higher substrate temperatures revealed less-contrasted c(2 × 2) patterns. The IRRAS intensities of the linearly bonded CO bands on 373-K-, 473-K-, and 673-K-deposited c(2 × 2) surfaces are, respectively, 25%, 22%, and 10% less intense than those on the RT-deposited surface, indicating that Pd coverages at the outermost c(2 × 2) surfaces decrease with increasing deposition temperature. In the initial stage of the 90-K-CO exposure to the RT surface, the band attributable to CO bonded to the Pd emerged at 2067 cm−1 and shifted to higher frequencies with increasing CO exposure. At saturation coverage, the band was located at 2093 cm−1. In contrast, two distinct bands around 2090 cm−1 were apparent on the spectrum of the 473-K-deposited surface: the CO saturation spectrum was dominated by an apparent single absorption at 2090 cm−1 for the 673-K-deposited surface. The TPD spectra of the surfaces showed peaks at around 200 and 300 K, which were ascribable respectively to Cu-CO and Pd-CO. Taking into account the TPD and IRRAS results, we discuss the adsorption-desorption behaviors of CO on the ordered checkerboard structures.  相似文献   

12.
Emission spectra of the b1Σ+(b0+) → X3Σ(X10+,X21) and a1Δ(a2) → X21 transitions of AsBr have been measured in the near-infrared spectral region with a Fourier-transform spectrometer. The arsenic bromide radicals were generated in fast-flow systems by reaction of arsenic vapor (Asx) with bromine and were excited by microwave-discharged oxygen. The most prominent features in the spectrum are the Δv = +1,0,−1, and −2 band sequences of the b1Σ+(b0+) → X3Σ(X10+) transition in the range 11 700-12 700 cm−1. With lower intensities, the Δv = 0 and −1 sequences of the b1Σ+(b0+) → X3Σ(X21) sub-system show up in the same range. Further to the red, between 6000 and 6700 cm−1, the Δv = 0, +1, and −1 sequences of the hitherto unknown a1Δ(a2) → X21 transition are observed. Analyses of medium- and high-resolution spectra have yielded improved molecular constants for the X10+, X21, and b0+ states and first values of the electronic energy and the vibrational constants of the a2 state.  相似文献   

13.
A combined atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS) study of tungsten oxide model catalysts is presented. The model catalysts were prepared by applying the real preparation method to a ZrO2(1 0 0) single crystal support. AFM imaged several granular structures of scattered dimensions on the surface of ZrO2(1 0 0) in the as prepared samples. After heating, at low loading the tungsten species rearranged into small WOx particles strongly interacting with the substrate. At high tungsten content large WO3 aggregates also formed. XPS analysis confirmed these changes. The estimated surface density of the interacting W-containing species closely matched that of real catalysts.  相似文献   

14.
TiO2 and TiNxOy thin films grown by low pressure metal-organic chemical vapor deposition (LP-MOCVD) on top of Si(0 0 1) substrate were characterized by X-ray multiple diffraction. X-ray reflectivity analysis of TiO2[1 1 0] and TiNO[1 0 0] polycrystalline layers allowed to determine the growth rate (−80 Å/min) of TiO2 and (−40 Å/min) of TiNO films. X-ray multiple diffraction through the Renninger scans, i.e., ?-scans for (0 0 2)Si substrate primary reflection is used as a non-conventional method to obtain the substrate lattice parameter distortion due to the thin film conventional deposition, from where the information on film strain type is obtained.  相似文献   

15.
Au/TiO2/Ru(0 0 0 1) model catalysts and their interaction with CO were investigated by scanning tunneling microscopy and different surface spectroscopies. Thin titanium oxide films were prepared by Ti deposition on Ru(0 0 0 1) in an O2 atmosphere and subsequent annealing in O2. By optimizing the conditions for deposition and post-treatment, smooth films were obtained either as fully oxidized TiO2 or as partly reduced TiOx, depending on the preparation conditions. CO adsorbed molecularly on both oxidized and reduced TiO2, with slightly stronger bonding on the reduced films. Model catalyst surfaces were prepared by depositing submonolayer quantities of Au on the films and characterized by X-ray photoelectron spectroscopy and scanning tunneling microscopy. From X-ray photoelectron spectroscopy, a weak interaction between the Au and the TiO2 substrate was found. At 100 K CO adsorption occurred on both the TiO2 film and on the Au nanoparticles. CO desorbed from the Au particles with activation energies between 53 and 65 kJ/mol, depending on the Au coverage. If the Au deposit was annealed to 770 K prior to CO exposure, the CO adsorption energy decreased significantly. STM measurements revealed that the Au particles grow upon annealing, but are not encapsulated by TiOx suboxides. The higher CO adsorption energy observed for smaller Au coverages and before annealing is attributed to a significantly stronger interaction of CO with mono- and bilayer Au islands, while for higher particles, the adsorption energy becomes more bulk-like. The implications of these effects on the known particle size effects in CO oxidation over supported Au/TiO2 catalysts are discussed.  相似文献   

16.
The interactions of H and H2 with W(1 0 0)-c(2 × 2)Cu and W(1 0 0) have been investigated through density functional theory (DFT) calculations to elucidate the effect of Cu atoms on the reactivity of the alloy. Cu atoms do not alter the attraction towards top-W sites felt by H2 molecules approaching the W(1 0 0) surface but make dissociation more difficult due to the rise of late activation barriers. This is mainly due to the strong decrease in the stability of the atomic adsorbed state on bridge sites, the most favourable ones for H adsorption on W(1 0 0). Still, our results show unambiguously that H2 dissociative adsorption on perfect terraces of the W(1 0 0)-c(2 × 2)Cu surface is a non-activated process which is consistent with the high sticking probability found in molecular beam experiments at low energies.  相似文献   

17.
S.H. Cheung 《Surface science》2007,601(7):1754-1762
We describe the growth and properties of well-defined epitaxial TiO2−xNx rutile for the first time. A mixed beam of atomic N and O radicals was prepared in an electron cyclotron resonance plasma source and Ti was supplied from a high-temperature effusion cell or an electron beam evaporator, depending on the required flux. A very high degree of structural quality is generally observed for films grown under optimized anion-rich conditions. N substitutes for O in the lattice, but only at the ∼1 at.% level, and is present as N3−. Epitaxial growth of TiO2 and TiO2−xNx rutile prepared under anion-rich conditions is accompanied by Ti indiffusion, leading to interstitial Ti (Tii), which is a shallow donor in rutile. Our data strongly suggest that Tii donor electrons compensate holes associated with substitutional N2− (i.e., Ti(III) + N2− → Ti(IV) + N3−), leading to highly resistive or weakly n-type, but not p-type material. Ti 2p core-level line shape analysis reveals hybridization of N and Ti, as expected for substitutional N. Ti-N hybridized states fall in the gap just above the VBM, and extend the optical absorption well into the visible.  相似文献   

18.
A fabrication of all-solid-state thin-film rechargeable lithium ion batteries by sol-gel method is expected to achieve both the simplification and cost reduction for fabrication process. TiO2 thin film electrode was prepared by PVP (polyvinylpyrrolidone) sol-gel method combined with spin-coating on Li1 + xAlxGe2 − x(PO4)3 (LAGP) solid electrolyte which has wide electrochemical window. The thin film was composed of anatase TiO2 that is the most active phase for Li insertion and extraction and contacted well with LAGP substrate. In the cyclic voltammogram, a redox couple was observed at 1.8 V vs. Li/Li+ assigned to Li insertion/extraction into/from anatase TiO2, indicating that the thin film worked as electrode for lithium battery. The charge and discharge test in various charge and discharge rates revealed that the discharge process (delithiation) is thought to be faster than charge process (lithiation). It is attested that the sol-gel process, which derives both simplification and cost reduction for fabrication process, can be applied to thin film battery using LAGP solid electrolyte.  相似文献   

19.
Ethylene adsorption was studied by use of DFT/B3LYP with basis set 6-31G(d,p) in Gaussian’03 software. It was found that ethylene has adsorbed molecularly on all clusters with π adsorption mode. Relative energy values were calculated to be −50.86 kcal/mol, −20.48 kcal/mol, −32.44 kcal/mol and −39.27 kcal/mol for Ni13 nanocluster, Ni10(1 1 1), Ni13(1 0 0) and Ni10(1 1 0) surface cluster models, respectively. Ethylene adsorption energy is inversely proportional to Ni coordination number when Ni10(1 1 1), Ni13(1 0 0) and Ni10(1 1 0) cluster models and Ni13 nanocluster are compared with each other.  相似文献   

20.
E.L. Wilson  G. Thornton 《Surface science》2006,600(12):2555-2561
Reflection absorption infrared spectroscopy (RAIRS) has been used to investigate the adsorption of CO on CeO2−x-supported Pd nanoparticles at room temperature. The results show that when CeO2−x is initially grown on Pt(1 1 1), a small proportion of the surface remains as bare Pt sites. However, when Pd is deposited onto CeO2−x/Pt(1 1 1), most of the Pd grows directly on top of the CeO2−x(1 1 1). RAIR spectra of CO adsorption on 1 ML Pd/CeO2−x/Pt(1 1 1) show a broad CO-Pd band, which is inconsistent with a single crystal Pd surface. However, the 5 ML and 10 ML Pd/CeO2−x/Pt(1 1 1) spectra show vibrational bands consistent with the presence of Pd(1 1 1) and (1 0 0) faces, suggesting the growth of Pd nanostructures with well defined facets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号