首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Amorphous thin films of TiO2 are irradiated by swift heavy ion (SHI) beam. Surface topography is studied by atomic force microscopy (AFM). Formation of nanosized oblate hillocks on the surface of irradiated films is investigated by AFM studies. After irradiation, amorphous to crystalline phase transition is observed in glancing angle X-ray diffraction (GAXRD) and Raman spectroscopy studies. Photoluminescence (PL)-spectroscopy is carried out for optical characterization. Threshold value necessary for emergence of hillocks is estimated.  相似文献   

2.
Single-phase perovskite structure Pb1−xBaxTiO3 thin films (x=0.30, 0.50 and 0.70) were deposited on Pt/Ti/SiO2/Si substrates by the spin-coating technique. The dielectric study reveals that the thin films undergo a diffuse type ferroelectric phase transition, which shows a broad peak. An increase of the diffusivity degree with the increasing Barium contents was observed, and it was associated to a grain decrease in the studied composition range. The temperature dependence of the phonon frequencies was used to characterize the phase transition temperatures. Raman modes persist above tetragonal to cubic phase transition temperature, although all optical modes should be Raman inactive. The origin of these modes was interpreted in terms of breakdown of the local cubic symmetry by chemical disorder. The absence of a well-defined transition temperature and the presence of broad bands in some interval temperature above FE-PE phase transition temperature suggested a diffuse type phase transition. This result corroborates the dielectric constant versus temperature data, which showed a broad ferroelectric phase transition in these thin films. The leakage current density of the PBT thin films was studied at different temperatures and the data follow the Schottky emission model. Through this analysis the Schottky barrier height values 0.75, 0.53 and 0.34 eV were obtained to the PBT70, PBT50 and PBT30 thin films, respectively.  相似文献   

3.
Ion beam patterned CrPt3 films were prepared by Kr+ ion irradiation at a dose of 2×1014 ions/cm2 onto L12-ordered CrPt3 whose surface was partially masked by electron beam patterned resists. Cross-sectional observation using transmission electron microscopy was carried out to study the patterning boundary of the CrPt3 film. Dark-field imaging showed a distinct contrast between non-irradiated (L12 phase) and irradiated (A1 phase) regions. The transition width between the two phases was estimated to be about 5 nm, which agreed well with the value simulated by a transport ion in matter (TRIM) code simulation.  相似文献   

4.
Nanocrystalline TiO2 structures are formed by irradiation of 100 MeV Au8+ ion beam on amorphous thin films of TiO2. Surface morphology of the nanocrystals is studied by Atomic Force Microscopy (AFM). Amorphous to nanocrystalline phase transformation is identified by Glancing Angle X-ray Diffraction (GAXRD) and Raman spectroscopic studies. Optical characterization is carried out by UV-VIS spectroscopy technique. Blue shift observed in absorption band edge indicates the formation of nanophase TiO2 after irradiation. The impinging swift heavy ion (100 MeV Au8+) induces nucleation of nanoparticles along the ion trajectory through inelastic collisions of the projectile with electrons of the material. It is observed that the shape and size of nanoparticles formed is dependant on the irradiation fluence.  相似文献   

5.
Polycrystalline SrTiO3 thin films were prepared by pulsed laser deposition technique. The phonon properties and structural phase transition were studied by Raman spectroscopy. The first-order Raman scattering, which is forbidden in SrTiO3 single crystal, has been observed in the films, due to the structural distortion caused by strain effect and oxygen vacancies. The Fano-type line shape of TO2 phonon reveals the existence of polar microregions in the STO thin films. The evolution of TO2 and TO3 phonons with temperature shows the occurrence of a structural phase transition at 120 K related to the formation of polar macroregions in the films.  相似文献   

6.
In the equilibrium immiscible Ag–Co system characterized by a large positive heat of formation (28 kJ/mol), interesting structural phase transitions were observed in Ag–Co multilayered films upon 200-keV xenon-ion irradiation at 300 K within a dose range of 5×1014 to 9×1015 Xe+/cm2. The formation of a new metastable HCP phase and observation of other structural phase transitions upon ion irradiation were quite in accordance with first principles and thermodynamic calculations. It was observed that in the as-deposited Ag–Co multilayered films, the stress from the Co layers resulted in a condensation effect on the Ag lattice, and that after irradiation to a dose of 5×1014 Xe+/cm2, the Ag lattice recovered to its original size along with the hcp Co transforming into its high-temperature-stabilized fcc structure. Besides, the mechanism of the metastable phase formation as well as the observed structural phase transitions induced by ion irradiation is discussed in terms of thermodynamics and growth kinetics. PACS 61.82.Bg; 64.60.My; 64.70.Kb  相似文献   

7.
Two kinds of spinel LiMn2O4 thin film for lithium ion micro-batteries were successfully prepared on polycrystal Pt substrates by spin coating methods, which were carried out under ultrasonic irradiation (USG) and magnetic stirring (MSG), respectively. The microstructures and electrochemical performance of LiMn2O4 thin films were characterized by thermogravimetry analysis (TGA), X-ray diffraction (XRD), scanning electron microscopy (SEM), and galvanostatic charge-discharge measurements. It was found that the crystalline structure of USG samples grew better than that of the MSG samples. At the same time, higher discharge capacity and better cycle stability were obtained for the LiMn2O4 thin films of USG at the current density of 50 μAh/cm2 between 3.0 and 4.3 V. The 1st discharge capacity was 57.8 μAh/cm2-μm for USG thin films and 51.7 μAh/cm2-μm for MSG thin films. After 50 cycles, 91.4% and 69% of discharge capacity could be retained respectively, indicating that ultrasonic irradiation condition during spin coating was more suitable for preparing spinel LiMn2O4 thin films with better electrode performance for lithium ion micro-batteries.  相似文献   

8.
Tris-(8-hydroxyquinoline)aluminum (Alq3), one of the most widely used light emitting and electron transport materials in organic luminescent devices, has been synthesized. Alq3 thin films have been deposited by a thermal evaporation process on glass substrates. The effect of swift heavy ion (SHI) irradiation using 40 MeV Li3+ on the Alq3 thin films has been studied by UV-visible, infrared, photoluminescence (PL) and time-resolved photoluminescence (TRPL) spectroscopy. From TRPL studies, it is found that the PL of Alq3 thin films arises from two species corresponding to its two geometrical isomers, namely facial and meridional having two different life times. It is also confirmed that the PL and lifetimes of excitons decrease with the increase of ion fluences of SHI of 40 MeV Li3+, indicating a transfer of exciton energy to unstable cationic Alq3 species generated by SHI irradiation.  相似文献   

9.
The synthesis of nanocrystalline ZnS thin films by pulsed laser deposition and their modification by swift heavy ions are presented. The irradiations with 150 MeV Ni ions at fluences of 1×1011, 1×1012 and 1×1013 ions/cm2 have been used for these studies. Irradiation results in structural phase transformation and bandgap modification of these films are investigated by using X-ray diffraction and UV-visible absorption measurements, respectively. Since stoichiometry changes induced by irradiation can contribute to the modification of these properties, elastic recoil detection analysis has been performed on pristine and 150 MeV Ni ions irradiated ZnS thin films using a 120 MeV Ag ion beam. The stoichiometry of the films has been found to be similar for pristine and ion irradiated samples. A structural phase diagram based on thermal and pressure spikes has been constructed to explain the structural phase transformation.  相似文献   

10.
Modifications in the structural and optical properties of 100 MeV Ni7+ ions irradiated cobalt doped ZnO thin films (Zn1−xCoxO, x = 0.05) prepared by sol-gel route were studied. The films irradiated with a fluence of 1 × 1013 ions/cm2 were single phase and show improved crystalline structure with preferred C-axis orientation as revealed from XRD analysis. Effects of irradiation on bond structure of thin films were studied by FTIR spectroscopy. The spectrum shows no change in bonding structure of Zn-O after irradiation. Improved quality of films is further supported by FTIR studies. Optical properties of the pristine and irradiated samples have been determined by using UV-vis spectroscopic technique. Optical absorption spectra show an appreciable red shift in the band gap of irradiated Zn1−xCoxO thin film due to sp-d interaction between Co2+ ions and ZnO band electrons. Transmission spectra show absorption band edges at 1.8 eV, 2.05 eV and 2.18 eV corresponding to d-d transition of Co2+ ions in tetrahedral field of ZnO. The AFM study shows a slight increase in grain size and surface roughness of the thin films after irradiation.  相似文献   

11.
Structural transitions of BaMnF4 are studied by piezoelectric resonance. The results show that large structural modulations occur from 220 K to 250 K. It is found from the temperature-dependence of the resonance curves that successive phase transitions appear at about 226 K, 234 K and 244 K. The inconsistency of the transition temperature from a A21 am to an incommensurate phase is interpreted as intrinsic structural instability, but not by defects or impurities in the crystal of BaMnF4 used.  相似文献   

12.
Optical non destructive evaluation methods, using lasers as the object illumination source, include holographic interferometry. It is widely used to measure stress, strain, and vibration in engineering structures. Double exposure holographic interferometry (DEHI) technique is used to determine thickness and stress of electrodeposited bismuth trisulphide (Bi2S3) thin films for various deposition times. The same is tested for other concentration of the precursors. It is observed that, increase in deposition time, increases thickness of thin film but decreases stress to the substrate. The structural, optical and surface wettability properties of the as deposited films have been studied using X-ray diffraction (XRD), optical absorption and contact angle measurement, respectively. The X-ray diffraction study reveals that the films are polycrystalline with orthorhombic crystal structure. Optical absorption study shows the presence of direct transition with band bap 1.78 eV. The water contact angle measurement shows hydrophobic nature of Bi2S3 thin film surface.  相似文献   

13.
Nanocrystalline thin films of TiO2 were prepared on glass substrates from an aqueous solution of TiCl3 and NH4OH at room temperature using the simple and cost-effective chemical bath deposition (CBD) method. The influence of deposition time on structural, morphological and optical properties was systematically investigated. TiO2 transition from a mixed anatase–rutile phase to a pure rutile phase was revealed by low-angle XRD and Raman spectroscopy. Rutile phase formation was confirmed by FTIR spectroscopy. Scanning electron micrographs revealed that the multigrain structure of as-deposited TiO2 thin films was completely converted into semi-spherical nanoparticles. Optical studies showed that rutile thin films had a high absorption coefficient and a direct bandgap. The optical bandgap decreased slightly (3.29–3.07 eV) with increasing deposition time. The ease of deposition of rutile thin films at low temperature is useful for the fabrication of extremely thin absorber (ETA) solar cells, dye-sensitized solar cells, and gas sensors.  相似文献   

14.
In this paper, we present the impact of swift heavy ion beam irradiation on the structural, optical and electronic properties of SnO2 thin films. Thin films were deposited using the pulsed laser deposition technique on Al2O3 substrates. Atomic force microscopy, X-ray diffraction, UV–visible absorption and temperature-dependent resistivity measurements were performed to explore the morphological, structural, optical and electronic properties of the as-deposited and irradiated samples. The peak intensity of the (200) peak was found to decrease monotonously with increasing irradiation fluence. The band gap energy of the 1×1011 ion/cm2 irradiated sample was found to increase. The electrical resistivity of the samples showed a continuous increase with the irradiation fluence.  相似文献   

15.
Influence of substrate on electronic sputtering of fluoride (LiF, CaF2 and BaF2) thin films, 10 and 100 nm thin, under dense electronic excitation of 120 MeV Ag25+ ions irradiation is investigated. The sputtering yield of the films deposited on insulating (glass) and semiconducting (Si) substrates are determined by elastic recoil detection analysis technique. Results revealed that sputtering yield is higher, up to 7.4 × 106 atoms/ion for LiF film on glass substrate, than that is reported for bulk materials/crystals (∼104 atoms/ion), while a lower value of the yield (2.3 × 106 atoms/ion) is observed for film deposited on Si substrate. The increase in the yield for thin films as compared to bulk material is a combined effect of the insulator substrate used for deposition and reduced film dimension. The results are explained in the framework of thermal spike model along with substrate and size effects in thin films. It is also observed that the material with higher band gap showed higher sputtering yield.  相似文献   

16.
We have deposited c-axis oriented thin films of La1.5Dy0.5CaBa2Cu5Oz (La-2125) tetragonal superconductor on LaAlO3(001) substrates by pulsed laser deposition. These films were irradiated with 200 MeV Ag+15 ions. Atomic force microscopy and elastic recoil detection analysis indicate that the irradiation has created columnar defects through the entire thickness (2000 Å) of these films. With ion irradiation up to 1×1011 ions/cm2, the critical current density (Jc(H)) enhances by fivefold, which is attributed to the augmented flux pinning by the columnar defects. A further increase in irradiation to 1×1012 ions/cm2 causes reduction in Jc(H) due to distorted morphology of the film. Our work shows that the enhancement in Jc(H) of the irradiated La-2125 film is comparable to that in irradiated RE-123 (RE = rare earth ion). Also, as the La-2125 type films have greater chemical stability than RE-123, La-2125 type superconductors are potential candidates for applications. It is interesting to note that there are partial flux jumps observed to occur symmetrically in the magnetic hysteresis of irradiated La-2125 thin films with enhanced Jc(H).  相似文献   

17.
In2S3 thin films were grown on glass substrates by means of the vacuum thermal evaporation technique and subsequently thermally annealed in nitrogen and free air atmosphere from 250 to 350 °C for different durations. Experimental parameters have been adjusted in order to optimize the annealing conditions, and to obtain high band gap energy at low deposition temperature, as required for photovoltaic applications. In order to improve our understanding of the influence of the deposition and annealing parameters on device performance, we have investigated our indium sulfide material by X-ray diffraction, energy dispersive X-ray analysis (EDAX), atomic force microscopy (AFM) and spectrophotometry. The optical and structural properties of the films were studied as a function of the annealing temperature and durations. X-ray diffraction analysis shows the initial amorphous nature of deposited In-S thin films and the phase transition into crystalline In2S3 upon thermal annealing. Films show a good homogeneity and optical direct band gap energy about 2.2 eV. An annealing temperature of 350 °C during 60 min in air atmosphere were the optimal conditions.  相似文献   

18.
Highly oriented (100) thin films of LaVO3 and La1−xSrxVO3 have been fabricated by pulsed laser deposition in a reducing atmosphere. The films show a transition from insulating to metallic behaviour in the composition region of x, 0.175<x<0.200. In the single crystals of the antiferromagnetic insulating phase, a first-order structural phase transition is observed few degrees below the magnetic transition, which manifests itself as a kink in the temperature dependence of resistivity. In the highly oriented thin films of LaVO3 and La1−xSrxVO3 fabricated on lattice matched substrates in this study, the structural phase transformation in the insulating phase has been suppressed. The electrical conduction is found to take place via hopping through localized states at low temperatures. The metallic compositions show a non-linear (T1.5) behaviour in the temperature dependence of resistivity. V (2p) core level spectra of these films show a gradual change in the relative intensities of V3+ and V4+ ions as the value of x increases.  相似文献   

19.
In the present paper, we investigate the effect of thermal annealing on optical and microstructural properties of HfO2 thin films (from 20 to 190 nm) obtained by plasma ion assisted deposition (PIAD). After deposition, the HfO2 films were annealed in N2 ambient for 3 h at 300, 350, 450, 500 and 750 °C. Several characterisation techniques including X-ray reflectometry (XRR), X-ray diffraction (XRD), spectroscopic ellipsometry (SE), UV Raman and FTIR were used for the physical characterisation of the as-deposited and annealed HfO2 thin films. The results indicate that as-deposited PIAD HfO2 films are mainly amorphous and a transition to a crystalline phase occurs at a temperature higher than 450 °C depending on the layer thickness. The crystalline grains consist of cubic and monoclinic phases already classified in literature but this work provides the first evidence of amorphous-cubic phase transition at a temperature as low as 500 °C. According to SE, XRR and FTIR results, an increase in the interfacial layer thickness can be observed only for high temperature annealing. The SE results show that the amorphous phase of HfO2 (in 20 nm thick samples) has an optical bandgap of 5.51 eV. Following its transition to a crystalline phase upon annealing at 750 °C, the optical bandgap increases to 5.85 eV.  相似文献   

20.
Ba(Zr0.05Ti0.95)O3 (BZT) thin films grown on Pt/Ti/SiO2/Si(1 0 0) substrates were prepared by chemical solution deposition. The structural and surface morphology of BZT thin films has been studied by X-ray diffraction (XRD) and scanning electron microscope (SEM). The results showed that the random oriented BZT thin film grown on Pt/Ti/SiO2/Si(1 0 0) substrate with a perovskite phase. The SEM surface image showed that the BZT thin film was crack-free. And the average grain size and thickness of the BZT film are 35 and 400 nm, respectively. Furthermore, the chemical states and chemical composition of the films were determined by X-ray photoelectron spectroscopy (XPS) near the surface. The XPS results show that Ba, Ti, and Zr exist mainly in the forms of BZT perovskite structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号