首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The inelastic mean free path (IMFP) of electrons was determined experimentally for selected polyaniline and polyacetylene samples with Ag and Ni references using elastic peak electron spectroscopy (EPES). The surface composition was determined by XPS and density by helium pycnometry. The high resolution hemispherical ESA-31 and ADES-400 spectrometers were used for measurements in the energy range E = 0.5–3.0 keV and E =0.4 − 1.6 keV, respectively. The integrated elastic peak intensity ratios for sample and reference were calculated using the Monte Carlo (MC) algorithm based on the electron elastic scattering cross-sections database NIST SRD64 version 3.1 and applying TPP-2M IMFPs for polymers. Surface excitation parameters (SEP) and material parameters ( ach ) for polymers were determined, using the model of Chen, from comparison of measured and MC calculated elastic peak intensity ratios. These corrections proved to be efficient in decreasing the percentage deviations between the obtained IMFPs and the TPP-2M formula IMFPs. The elastic peak of hydrogen was observed in the EPES spectra of polymers. The experimental contribution of the hydrogen to the total elastic peak was 0.58%, while this value obtained from the MC simulations was 1.98%.   相似文献   

2.
Scanning electron microscopy (SEM), Fourier transform infrared (FTIR) transmission, and Hall effect measurements were performed to investigate the structural, optical, and electrical properties of as-grown and in situ-annealed Hg0.7Cd0.3Te epilayers grown on CdTe buffer layers by using molecular beam epitaxy. After the Hg0.7Cd0.3Te epilayers had been annealed in a Hg-cell flux atmosphere, the SEM images showed that the surface morphologies of the Hg0.7Cd0.3Te thin films were mirror-like with no indication of pinholes or defects, and the FTIR spectra showed that the transmission intensities had increased in comparison to that of the as-grown Hg0.7Cd0.3Te epilayer. Hall-effect measurements showed that n-Hg0.7Cd0.3Te epilayers were converted to p-Hg0.7Cd0.3Te epilayers. These results indicate that the surface, optical, and electrical properties of the Hg1 − xCdxTe epilayers are improved by annealing and that as-grown n-Hg1 − xCdxTe epilayers can be converted to p-Hg1 − xCdxTe epilayers by in situ annealing.  相似文献   

3.
An analytical approach for simultaneously determining an inelastic mean free path (IMFP), a surface excitation parameter (SEP) and a differential SEP (DSEP) with absolute units was applied for the analysis of absolutely measured reflection electron energy loss spectra for Au. The IMFP, SEP and DSEP in Au for 300-3000 eV electrons are successfully obtained. The obtained DSEPs show a reasonable agreement with those theoretically calculated. The present SEPs were compared with those calculated by several empirical equations, revealing that the present SEPs are close to those calculated using the Oswald's equation. The IMFPs for Au determined by the present analysis were compared with those calculated by the TPP-2M predictive equation, revealing that the present IMFPs are in fairly good agreement with those calculated by the TPP-2M equation. The results confirmed that the present approach is effective for experimentally determining the SEP, DSEP, and IMFP for electrons in solids.  相似文献   

4.
In earlier works, the inelastic mean free path (IMFP) of electrons was determined by elastic peak electron spectroscopy (EPES) using Ni and Ag reference standard samples, but fully neglecting surface excitation. Surface excitation that is characterized by the surface excitation parameter (SEP), and may affect considerably the elastic peak for the sample and the reference material. The SEP parameters of selected conducting polymers (polythiophenes, polyaniline and polyethylene) were determined by EPES using Si and Ge reference samples. Experiments were made with a hemispherical analyzer of energy resolution 100-200 meV in the E = 0.2-2.0 keV energy range. The composition of the sample surfaces was determined by in situ XPS, their surface roughness by AFM. The experimental SEP parameter data of eight polymer samples were determined by our new procedure, using the formulae of Chen and Werner et al. in the E = 0.2-2.0 keV energy range. The trial and error procedure is based on the best approach between the experimental and calculated IMFPs, corrected on surface excitation. The improvement in the SEP correction appears in the difference between the corrected and Monte Carlo calculated IMFPs, assuming Gries and Tanuma et al. IMFPs for polymers and standard, respectively. The term describing the improvement by SEP resulted in 50-72% (good correction for five polymers) 24% (poor correction for one polymer), 1-6% (no correction for two polymers). The 100% correction was not achieved, indicating that the difference between experimental and calculated IMFP cannot be entirely explained by surface excitation. Using the SEP data of Si and Ge reference samples based on Chen's and Werner's material parameter values resulted in similar SEP corrections for the polymer samples.  相似文献   

5.
We report ab-initio calculations of the structural, electronic, magnetic and optical properties of the alloy Cd1-xMnxTe as a function of the Mn concentration ‘x’. Ab-initio calculations are based on the density functional theory (DFT) within the generalized gradient approximation (GGA). The calculated lattice constants of the Cd1-xMnxTe alloys exhibit Vegard's law downward bowing parameter. For the minority spin channel the Fermi level shifts toward higher energy with the value of ‘x’ in Cd1-xMnxTe. The spin-exchange splitting energy Δx(d) increases with increasing ‘x’ in Cd1-xMnxTe and the values of p-d exchange splitting energy Δx(pd) of Cd1-xMnxTe show that the effective potential for the minority spin is more attractive than that for the majority spin. The values of exchange constants N0α and N0β obtained for Cd1-xMnxTe are in agreement with the reported data. The magnetic moment per Mn atom reduces from its free space charge value of 5μB to around 4μB due to p-d hybridization and this results into an appearance of small local magnetic moments on the non-magnetic Cd and Te sites. The absorption threshold shifts toward higher energy and the static refractive index decreases with the increasing value of ‘x’ in Cd1-xMnxTe.  相似文献   

6.
Injection of spin-polarized current into spintronic devices is a challenge to the semiconductor physicists and technologists. II-VI compound semiconductors can act as the spin aligner on the top of GaAs light emitting diode. However, II-VI compound semiconductor like Cd1−xMnxTe is still suffering from contacting problem. Application of electroless deposited magnetic NiP:Mn contact would enhance efficient current injection into Cd1−xMnxTe than the standard gold contact. A technique for electroless deposition of NiP:Mn on Cd1−xMnxTe have been described here. The electronic and magnetic properties of the contact material NiP:Mn and the contact performance of NiP:Mn relative to evaporated gold have been evaluated. The contact fulfills the requirements of resistivity and ferromagnetism for application to Cd1−xMnxTe.  相似文献   

7.
Atomic and electronic structure modification of a metal-Cd1−xMnxTe interface is achieved using selective etching of the Cd1−xMnxTe surface (x=0, 0.34) and Cd adsorption. It is revealed that Te, TeO2, Mn3O4, and CdTeO3 are formed at the Cd1−xMnxTe surface etched in Br2 solution. Te and Cd1−xMnxTe produce TeCd1−xMnxTe heterojunctions, the salient features of which are nearly symmetric nonlinear I-V characteristics. At the Cd1−xMnxTe surface with adsorbed Cd, CdTe might form, resulting in a CdTe-Cd1−xMnxTe heterojunction. The metal-CdTe-Cd1−xMnxTe microstructure is characterized by a nonlinear dependence of current on voltage and rectifying behaviour. The results obtained give deep insight into electronic processes in metal-Cd1−xMnxTe microstructures.  相似文献   

8.
X-ray photoelectron (XPS) studies of core-levels in Sn1−xMnxTe (x < 0.1) semimagnetic semiconductors have been performed. The spectra were acquired under UHV conditions from the clean (as-cleaved or in-situ scraped) crystal surface. The single-phase NaCl structure of the alloys studied was verified by X-ray diffraction (XRD). The structure of Sn 3d and Te 3d core-levels in SnMnTe was found fully consistent with that of SnTe. Remarkable qualitative similarity of the Mn 2p spectrum of Sn1−xMnxTe (x = 0.09) with the case of zinc-blende MnTe [R.J. Iwanowski, M.H. Heinonen, E. Janik, Chem. Phys. Lett. 387 (2004) 110] has been shown: (1) the same binding energies (BEs) of the main contributions to the Mn 2p3/2 line, related to Mn2+ state of the bulk MnTe bond; (2) occurrence of low BE component in the Mn 2p spectrum, indicative of clean-surface species containing reduced-valence Mn ions (i.e. Mnq+, where 0 < q < 2); (3) strong satellites of the 2p3/2 (Mn2+ related) parent lines. In SnMnTe, the highest intensity ratio of the satellite to main peak (ever reported for Mn 2p photoelectron spectrum) was revealed; this was interpreted in terms of the so-called charge-transfer model.  相似文献   

9.
We have investigated the structural, electronic and magnetic properties of the diluted magnetic semiconductor (DMS) Cd1−xMnxTe (for x=0.75 and 1.0) in the zinc blende (B3) phase by employing the ab-initio method. Calculations were performed by using the full potential linearized augmented plane wave plus local orbitals (FP-L/APW+lo) method within the frame work of spin-polarized density functional theory (SP-DFT). The electronic exchange-correlation energy is described by generalized gradient approximation (GGA). We have calculated the lattice parameters, bulk modulii and the first pressure derivatives of the bulk modulii, spin-polarized band structures, and total and local densities of states. We estimated the spin-exchange splitting energies Δx(d) and Δx(pd) produced by the Mn3d states, and we found that the effective potential for the minority spin is more attractive than that of the majority spin. We determine the s-d exchange constant N0α (conduction band) and p-d exchange constant N0β (valence band) and these somewhat agree with a typical magneto-optical experiment. The value of calculated magnetic moment per Mn impurity atom is found to be 4.08 μB for Cd0.25Mn0.75Te and 4.09 μB for Cd0.0Mn1.0Te. Moreover, we found that p-d hybridization reduces the local magnetic moment of Mn from its free space charge value of 5.0 μB and produces small local magnetic moments on the nonmagnetic Cd and Te sites.  相似文献   

10.
Thin iron oxide layers prepared “in situ” in the ultra high vacuum on polycrystalline iron substrate were investigated by electron spectroscopy methods—X-ray photoelectron spectroscopy (XPS) and elastic peak electron spectroscopy (EPES), using spectrometer ADES-400. The texture and the average grain size of the iron substrate foil have been examined by glancing angle X-ray diffraction (XRD). Qualitative and quantitative estimation of investigated oxide layers was made using (i) the relative sensitivity factor XPS method, (ii) comparison of binding energy shifts of Fe 2p photoelectron line and (iii) non-linear fitting procedure of Fe 2p photoelectron lines.Both, sputter-clean polycrystalline iron substrate and finally grown Fe2.2O3 layer, were investigated by the EPES method to measure the electron transport parameters used for quantitative electron spectroscopy, such as the electron inelastic mean free path (IMFP) values. The IMFPs were measured in the electron kinetic energy range 200-1000 eV with the Cu standard. The surface excitation parameters using Chen and Werner et al. approaches were evaluated and applied for correcting these IMFPs. The discrepancies between the evaluated parameters obtained using the above quantitative and qualitative approaches for characterising the iron oxide layers were discussed.  相似文献   

11.
The surface modification of Cd1−xMnxTe (x = 0-0.3) crystal wafers under pulsed laser irradiation has been studied. The samples were irradiated by a Q-switched ruby laser with pulse duration of 80 ns. Optical diagnostics of laser-induced thermal processes were carried out by means of time-resolved reflectivity measurements at wavelengths 0.53 and 1.06 μm. Laser irradiation energy density, E varied in the range of 0.1-0.6 J/cm2. Morphology of irradiated surface was studied using scanning electron microscopy. The energy density whereby the sample surface starts to melt, depends on Mn content and is equal to 0.12-0.14 J/cm2 for x ≤ 0.2, in the case of x = 0.3 this value is about 0.35 J/cm2. The higher Mn content leads to higher melt duration. The morphology of laser irradiated surface changes from a weakly modified surface to a single crystal strained one, with an increase in E. Under irradiation with E in the range of 0.21-0.25 J/cm2, the oriented filamentary crystallization is observed. The Te inclusions on the surface are revealed after the irradiation of samples with small content of Mn.  相似文献   

12.
Mn3TeO6 exhibits a corundum-related A3TeO6 structure and a complex magnetic structure involving two magnetic orbits for the Mn atoms [Ivanov et al., 2011 [3]]. Mn3−xCdxTeO6 (x=0, 1, 1.5, and 2) ceramics were synthesized by solid state reaction and investigated using X-ray powder diffraction, electron microscopy, and calorimetric and magnetic measurements. Cd2+ replaces Mn2+ cations without greatly affecting the structure of the compound. The Mn and Cd cations were found to be randomly distributed over the A-site. Magnetization measurements indicated that the samples order antiferromagnetically at low temperature with a transition temperature that decreases with increasing Cd doping. The nuclear and magnetic structure of one specially prepared 114Cd containing sample: Mn1.5114Cd1.5TeO6, was studied using neutron powder diffraction over the temperature range 2-295 K. Mn1.5114Cd1.5TeO6 was found to order in an incommensurate helical magnetic structure, very similar to that of Mn3TeO6 [Ivanov et al., 2011 [3]]. However, with a lower transition temperature and the extension of the ordered structure confined to order 240(10) Å.  相似文献   

13.
Epitaxial thin films of CaRu1−xMxO3 (M=Ti, Mn) were fabricated on a (0 0 1)-SrTiO3 substrate by spin-coat method using organometallic solutions (metal alkoxides). Results of X-ray diffraction and transmission electron microscopy indicate that the epitaxial films were grown pseudomorphically so as to align the [0 0 l] axis of the CaRu1−xMxO3 films perpendicular to the (0 0 1) plane of the SrTiO3 substrate. Ferromagnetism and metal-insulator transition are induced by the substitution of transition metal ions. The occurrence of ferromagnetism was explained qualitatively assuming a TiRu6 cluster model for CaRu1−xTixO3 film and a mixed valence model for CaRu1−xMnxO3 film. Ferromagnetism was also observed for layered CaRuO3/CaMnO3 film and CaRuO3/CaMnO3/CaRuO3/CaMnO3 multilayer film and the magnetism was explained by an interfacial exchange interaction model with magnetic Mn3+, Mn4+, and Ru5+ ions.  相似文献   

14.
BiFeO3/Zn1−xMnxO (x = 0-0.08) bilayered thin films were deposited on the SrRuO3/Pt/TiO2/SiO2/Si(1 0 0) substrates by radio frequency sputtering. A highly (1 1 0) orientation was induced for BiFeO3/Zn1−xMnxO. BiFeO3/Zn1−xMnxO thin films demonstrate diode-like and resistive hysteresis behavior. A remanent polarization in the range of 2Pr ∼ 121.0-130.6 μC/cm2 was measured for BiFeO3/Zn1−xMnxO. BiFeO3/Zn1−xMnxO (x = 0.04) bilayer exhibits a highest Ms value of 15.2 emu/cm3, owing to the presence of the magnetic Zn0.96Mn0.04O layer with an enhanced Ms value.  相似文献   

15.
Valence band electron states of Cd1-xMnxTe mixed crystals were determined over the composition range 0?x?0.7 by ultra-violet photoelectron spectroscopy (UPS) and X-ray photoelectron spectroscopy (XPS). A peak at 3.5 eV binding energy (BE) whose magnitude increases with the manganese mole fraction x was identified as originating from the Mn 3d5 level. A previously reported structure at 6.5 eV BE was also observed for x>0.4; it is, however, believed to be a satellite of the 3.5 eV peak originating from a shake-up process.  相似文献   

16.
Pristine spinel LiMn2O4 and LiAlxMn2−xO4 (x=Al: 0.00-0.40) with sub-micron sized particles have been synthesized using fumaric acid as chelating agent by sol-gel method. The synthesized samples were subjected to thermogravimetric analysis (TGA), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and cyclic voltammetry (CV) and galvanostatic cycling studies. The TGA curve of the gel shows several weight-loss regions stepwise amounting to 55% till 800 °C attributed to the decomposition of the precursors. Calcination to higher temperatures (800 °C) yields pure-phase spinel (LiAlxMn2−xO4), as it is evident from the high-intensity XRD reflections matching to the standard pattern. SEM and TEM studies confirm that the synthesized grains are of uniform regular surface morphology. FT-IR studies show stretching and bending vibration bands of Li-O, Li-Al-Mn-O. LiAl0.1Mn1.90O4 spinel was found to deliver discharge capacity of 139 mA h/g during the first cycle with columbic efficiency of 97%. LiAl0.1Mn1.90O4 spinel exhibits the high cathodic peak current indicating better electrochemical performance. Low doping (x=0.1) of Al is found to be beneficial in stabilizing the spinel structure.  相似文献   

17.
The fracture mechanisms of Hg0.8Cd0.2Te induced by pulsed TEA-CO2 laser have been investigated theoretically and experimentally in this paper. The Hg0.8Cd0.2Te target was irradiated by a TEA-CO2 laser with wavelength of 10.6 μm and spike width of 240 ns in an ambient atmosphere. The evident cracks can be found on the surface of the target from the scanning electron microscopy (SEM) photos, indicating that the severe breaks happened during the experiment. Theoretical analysis has also been carried out and the results show that the fracture of Hg0.8Cd0.2Te is mainly induced by thermal stresses, although there are three forces (thermal stress, evaporation wave and laser-supported detonation (LSD) wave) exerted on the target surface during the process.  相似文献   

18.
Excitonic lifetimes in Cd1  xMnUe2Te, Cd1  xMgxTe epilayers and CdTe/Cd1  xMnxTe, Cd1  xMnxTe/Cd1  vMgyTe single quantum wells with different well widths and Mn, Mg compositions are investigated. The excitonic lifetimes are found to reduce drastically by applying external magnetic fields to samples with giant Zeeman splittings. The observed phenomenon is interpreted in terms of the PL decay time contribution from the long-life dark excitons which can convert to excitons for recombinations by a spin-flip process. We attribute the lifetime reduction to the depletion of dark excitons due to their crossing over the exciton energies for dipole allowed transitions in magnetic fields.  相似文献   

19.
Magnetization and spin-flip Raman measurements are reported for Cd1?xMnxSe, x = 0.106, at 1.9 < T < 4.2 K and magnetic fields H up to 80 kOe. The high-field results are combined to determine the exchange energy between donor electrons and Mn++ spins, αN0=261±13 meV. Empirical fits to the magnetization data are described.  相似文献   

20.
The conducting oxides solid solutions of Cd1+xIn2−2xSnxO4 (x=0.1, 0.3, 0.5, 0.7, 1.0) were prepared via a solid state reaction method. The band gaps were estimated to be 2.4 eV for x=1.0, 2.5 eV for x=0.7, 2.6 eV for x=0.5, 2.7 eV for x=0.3 and 2.8 eV for x=0.1. Oxygen could be evolved over Cd2SnO4 under the irradiation of Xe-lamp or even visible light (λ>420 nm), while the others could only work in the UV-light range. Raman showed the cation distribution in Cd2SnO4 is ordered, while that in the others is disordered. The cations distribution was proposed to be the cause of the difference in photocatalytic O2-evolution activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号