共查询到20条相似文献,搜索用时 0 毫秒
1.
O 1s and S 2p scanned-energy mode photoelectron diffraction (PhD) data, combined with multiple-scattering simulations, have been used to determine the local adsorption geometry of the SO2 and SO3 species on a Ni(1 1 1) surface. For SO2, the application of reasonable constraints on the molecular conformation used in the simulations leads to the conclusion that the molecule is centred over hollow sites on the surface, with the molecular plane essentially parallel to the surface, and with both S and O atoms offset from atop sites by almost the same distance of 0.65 Å. For SO3, the results are consistent with earlier work which concluded that surface bonding is through the O atoms, with the S atom higher above the surface and the molecular symmetry axis almost perpendicular to the surface. Based on the O 1s PhD data alone, three local adsorption geometries are comparably acceptable, but only one of these is consistent with the results of an earlier normal-incidence X-ray standing wave (NIXSW) study. This optimised structural model differs somewhat from that originally proposed in the NIXSW investigation. 相似文献
2.
The adsorption of CN on Cu(1 1 1), Ni(1 1 1) and Ni(1 0 0) has been investigated using density functional theory (DFT). While experimental studies of CN on Cu(1 1 1) show the molecular axis to be essentially parallel to the surface, the normally-preferred DFT approach using the generalised gradient approximation (GGA) yields a lowest energy configuration with the C-N axis perpendicular to the surface, although calculations using the local density approximation (LDA) do indicate that the experimental geometry is energetically favoured. The same conclusions are found for CN on Ni(1 1 1); on both surfaces bonding through the N atom is always unfavourable, in contrast to some earlier published results of ab initio calculations for Ni(1 1 1)/CN and Ni(1 0 0)/CN. The different predictions of the GGA and LDA approaches may lie in subtly different relative energies of the CN 5σ and 1π orbitals, a situation somewhat similar to that for CO adsorbed on Pt(1 1 1) which has proved challenging for DFT calculations. On Ni(1 0 0) GGA calculations favour a lying-down species in a hollow site in a geometry rather similar to that found experimentally and in GGA calculations for CN on Ni(1 1 0). 相似文献
3.
Density functional theory slab calculations have been used to investigate the structure of the Ni(1 1 0)c(2 × 2)-CN adsorption phase. The results show excellent agreement with experimental quantitative determinations of this structure by photoelectron diffraction and low energy electron diffraction. In particular, they show that a lying-down orientation with the C–N axis along [0 0 1] perpendicular to the close-packed Ni rows on the surface is strongly favoured over end-on adsorption (with the C–N axis perpendicular to the surface). This geometry is also favoured over a lying-down geometry with the C–N axis aligned along the azimuth, as originally proposed for this system and supported by cluster calculations. 相似文献
4.
The normal incidence X-ray standing wave (NIXSW) technique, supported by X-ray photoelectron spectroscopy and near-edge X-ray absorption fine structure (NEXAFS), has been used to determine the local adsorption geometry of SO2 and SO3 on Ni(1 1 1). Chemical-state specific NIXSW data for coadsorbed SO3 and S, formed by the disproportionation of adsorbed SO2 after heating from 140 K to 270 K, were obtained using S 1s photoemission detection. For adsorbed SO2 at 140 K the new results confirm those of an earlier study [Jackson et al., Surf. Sci. 389 (1997) 223] that the molecule is located above hollow sites with its molecular plane parallel to the surface and the S and O atoms in off-atop sites; corrections to account for the non-dipole effects in the interpretation of the NIXSW monitored by S 1s and O 1s photoemission, not included in the earlier work, remove the need for any significant adsorption-induced distortion of the SO2 in this structure. SO3, not previously investigated, is found to occupy an off-bridge site with the C3v axis slightly tilted relative to the surface normal and with one O atom in an off-atop site and the other two O atoms roughly between bridge and hollow sites. The O atoms are approximately 0.87 Å closer to the surface than the S atom. This general bonding orientation for SO3 is similar to that found on Cu(1 1 1) and Cu(1 0 0) both experimentally and theoretically, although the detailed adsorption sites differ. 相似文献
5.
Denise C. Ford 《Surface science》2005,587(3):159-174
The adsorption of several atomic (H, O, N, S, and C) and molecular (N2, HCN, CO, NO, and NH3) species and molecular fragments (CN, CNH2, NH2, NH, CH3, CH2, CH, HNO, NOH, and OH) on the (1 1 1) facet of platinum, an important industrial and fuel cell catalyst, was studied using self-consistent periodic density functional theory (DFT-GGA) calculations at a coverage of 1/4 ML. The best binding site, energy, and position, as well as an estimated diffusion barrier, of each species were determined. The binding strength for all the species can be ordered as follows: N2 < NH3 < HCN < NO < CO < CH3 < OH < NH2 < H < CN < NH < O < HNO < CH2 < NOH < CNH2 < N < S < CH < C. Although the atomic species generally preferred fcc sites, there was no clear trend in site preference by the molecular species or molecular fragments. The vibrational frequencies of all the stable adsorbates in their best and second best adsorption sites were calculated and found to be in good agreement with experimental values reported in the literature. Finally, the decomposition thermochemistry of NOH, HNO, NO, NH3, N2, CO, and CH3 was analyzed. 相似文献
6.
Electronic and atomic structures of different terminations of the (0 0 1) non-polar orientation of BaZrO3 surfaces have been studied using first-principles calculations. We found that surface energies at both possible surface terminations, BaO and ZrO2, were very close. The (0 0 1)-BaO and (0 0 1)-ZrO2 terminated surfaces have bandgap values smaller than that of a bulk BaZrO3 crystal. In addition, the relative surface stability has been analyzed as a function of chemical environment. 相似文献
7.
Density functional theory (DFT) calculations have been performed to elucidate the electronic structures of the TiO-like film on TiC(1 0 0) and the ZrO-like film on ZrC(1 0 0), which are assumed to be monolayers of suboxide films with (1 × 1) periodicity with respect to the substrate (1 0 0) surfaces. It was revealed that the electronic structures of both films were characterized by the existence of a band around 6 eV and a band around the Fermi level. The former and latter bands were mostly composed of O 2p and metal d orbitals, respectively, indicating the substantial ionic nature of the film. The calculated DOS well reproduced the previously obtained photoelectron spectra. From the inspection of the optimized structures, it was found that the both suboxide films have rippled structures; the metal and oxygen atoms are displaced vertically downward and upward, respectively, maintaining the (1 × 1) structures. 相似文献
8.
Ab initio density functional theory was used to investigate the adsorption and diffusion of a single NO molecule on the unreconstructed Pt{1 0 0}-(1 × 1) surface. To our knowledge this is the first theoretical study of the NO diffusion activation energy on the Pt{1 0 0} surface. The most stable adsorption position for NO corresponds to the bridge site with the axis of the molecule perpendicular to the surface. The bond of the NO molecule to the surface is through the N-atom. We found that there is a low adsorption energy when the NO molecule is bonded through the O-atom and the axis is perpendicular to the surface, for the three high symmetry sites investigated. NO diffusion between bridge-hollow sites, bridge-atop sites, and hollow-atop sites was also investigated. The barrier for NO diffusion is 0.41 eV, which corresponds to the energy difference between the bridge and hollow sites. This value is around 15% of the highest adsorption energy found on this surface. NO stretch frequencies are also calculated for the three high symmetry sites investigated. 相似文献
9.
The chemisorption and dissociation pathways of NO on the Rh(1 0 0), (1 1 0), and (1 1 1) surfaces are studied by the plane-wave density functional theory (DFT) with CASTEP program. In addition, the electronic and geometrical effects that affect the NO dissociation reactions have been investigated in detail. The calculation results are presented as following: The effective activation energies of the best NO dissociation pathways on the Rh(1 0 0), the Rh(1 1 0), and the Rh(1 1 1) are 0.63, 0.66 and 1.77 eV, respectively. The activity of the Rh planes for NO dissociation is in the order of Rh(1 0 0) ≈ Rh(1 1 0) > Rh(1 1 1). The low dissociation barrier for Rh(1 0 0) and Rh(1 1 0) is associated with the existence of a lying-down NO structure which acts as a precursor for dissociation. By Mulliken population analysis and structure analysis, both electronic and geometrical effects are found to affect the NO dissociation reactions, but the geometrical effect exceed the electronic. The energy decomposition scheme has been used to provide further insight into the NO dissociation reactions. Based on the calculations, the interaction energy between N and O in the transition state on the Rh(1 1 1) is found much larger than that on the Rh(1 0 0) and the Rh(1 1 0). The major differences of should originate from the variation of the bonding competition effect. 相似文献
10.
We use core level photoelectron spectroscopy and density functional theory (DFT) to investigate the iodine-induced Pd(1 1 1)-I(√3 × √3) structure formed at 1/3 ML coverage. From the calculations we find that iodine adsorbs preferentially in the fcc hollow site. The calculated equilibrium distance is 2.06 Å and the adsorption energy is 68 kcal/mol, compared to 2.45 Å and 54 kcal/mol in the atop position. The adsorption energy difference between fcc and hcp hollows is 1.7 kcal/mol. Calculated Pd 3d surface core level shift on clean Pd(1 l 1) is 0.30 eV to lower binding energy, in excellent agreement with our experimental findings (0.28-0.29 eV). On the Pd(1 1 1)-I(√3 × √3) we find no Pd 3d surface core level shift, neither experimentally nor theoretically. Calculated charge transfer for the fcc site, determined from the Hirshfeld partitioning method, suggests that the iodine atom remains almost neutral upon adsorption. 相似文献
11.
Surface structures and electronic properties of hypophosphite, H2PO2−, molecularly adsorbed on Ni(1 1 1) and Cu(1 1 1) surfaces are investigated in this work by density functional theory at B3LYP/6-31++g(d, p) level. We employ a four-metal-atom cluster as the simplified model for the surface and have fully optimized the geometry and orientation of H2PO2− on the metal cluster. Six stable orientations have been discovered on both Ni (1 1 1) and Cu (1 1 1) surfaces. The most stable orientation of H2PO2− was found to have its two oxygen atoms interact the surface with two PO bonds pointing downward. Results of the Mulliken population analysis showed that the back donation from 3d orbitals of the transition metal substrate to the unfilled 3d orbital of the phosphorus atom in H2PO2− and 4s orbital's acceptance of electron donation from one lone pair of the oxygen atom in H2PO2− play very important roles in the H2PO2− adsorption on the transition metals. The averaged electron configuration of Ni in Ni4 cluster is 4s0.634p0.023d9.35 and that of Cu in Cu4 cluster is 4s1.004p0.033d9.97. Because of this subtle difference of electron configuration, the adsorption energy is larger on the Ni surface than on the Cu surface. The amount of charge transfers due to above two donations is larger from H2PO2− to the Ni surface than to the Cu surface, leading to a more positively charged P atom in NinH2PO2− than in CunH2PO2−. These results indicate that the phosphorus atom in NinH2PO2− complex is easier to be attacked by a nucleophile such as OH− and subsequent oxidation of H2PO2− can take place more favorably on Ni substrate than on Cu substrate. 相似文献
12.
Dominic R. Alfonso 《Surface science》2006,600(19):4508-4516
Density functional theory is used to investigate the initial inclusion of sulfur into the subsurface interstitial sites of Pd(1 1 1) surface. Pure subsurface adsorption is found to be less energetically favorable than on-surface adsorption. The incorporation of sulfur into the metal becomes more favorable than continuous adsorption on the surface after a critical on-surface sulfur coverage. We find subsurface sulfur occupation to be energetically favorable after adsorption of more than half a monolayer on the surface. Occupation of subsurface sites induces a pronounced structural distortion of the Pd(1 1 1) surface. We find significant expansion of interplanar spacing between the uppermost surface metal layers and rearrangement of the S overlayer. The interplay between the energy cost due to structural distortion of Pd(1 1 1) and the energy gain due to bond formation for different structures is discussed. 相似文献
13.
Surface X-ray diffraction has been used to investigate the structure of TiO2(1 1 0)(3 × 1)-S. In concert with existing STM and photoemission data it is shown that on formation of a (3 × 1)-S overlayer, sulphur adsorbs in a position bridging 6-fold titanium atoms, and all bridging oxygens are lost. Sulphur adsorption gives rise to significant restructuring of the substrate, detected as deep as the fourth layer of the selvedge. The replacement of a bridging oxygen atom with sulphur gives rise to a significant motion of 6-fold co-ordinated titanium atoms away from the adsorbate, along with a concomitant rumpling of the second substrate layer. 相似文献
14.
S.J. Jenkins 《Surface science》2006,600(7):1431-1438
The products of CO, NO, O2 and N2 dissociation on Fe{2 1 1} have been studied by means of first-principles density functional theory. Preferred adsorption sites for adatoms C, N and O are identified, and trends in charge transfer and surface magnetism described. An experimentally observed (2 × 1) reconstruction induced by O is confirmed to be energetically stable, and a similar reconstruction induced by N is tentatively predicted. It is argued that these reconstructions may be important not only in the context of the catalytic reactivity of the Fe{2 1 1} surface, but also for the initial stages of surface nitridation and oxidation. 相似文献
15.
The diffusion pathways of Pb adatoms and ad-dimers on Si(1 0 0) are investigated by first-principles calculations. Pb adatoms are found to diffuse on top of the Si(1 0 0) dimer row with an energy barrier of 0.31 eV. However, Pb dimers are energetically more stable. Pb dimers on top of the dimer row have a high energy barrier (0.95 eV) to rotate from the lowest energy configuration to the orientation parallel to the underlying Si(1 0 0) dimer row. Once the ad-dimer is oriented parallel to Si(1 0 0) dimer row, they can diffuse along the dimer row with an energy barrier of only 0.32 eV. 相似文献
16.
The reaction of SO2 with stoichiometric TiO2(1 1 0), partially reduced TiO2 − x(1 1 0) and Cu/TiO2(1 1 0) was investigated using synchrotron based X-ray photoemission spectroscopy. SO2 adsorbs on perfect TiO2(1 1 0) forming SO4 species at room temperature, while SO2 dissociatively adsorbs on partially reduced TiO2 − x(1 1 0) forming SO4, SO3 as well as two sulfide species. SO2 exposure to Cu particles supported on perfect TiO2(1 1 0) can lead to the formation of SO4, SO3 and sulfide species. When depositing Cu on SO4/TiO2(1 1 0) at room temperature, the dissociation efficiency of Cu atoms is much higher than that of Cu deposited on TiO2(1 1 0) prior to SO2 dosing. The post-deposited Cu atoms can efficiently contact and react with SO4 species before they form Cu-Cu bonds and big clusters. Small Cu nanoparticles supported on TiO2(1 1 0) are more reactive towards SO2 than surfaces of bulk copper. The chemical reactivity of the Cu/TiO2(1 1 0) system increases with Cu coverage until reaching a maximum at θCu = 0.5-0.8 ML. After this point, an increase in Cu coverage leads to the formation of big Cu particles and the reactivity of the system decrease to that typical of bulk Cu. A comparison with results for SO2/Cu/MgO(0 0 1) indicates that the effects of size and metal ↔ oxide interactions are important for the chemical activation of Cu nanoparticles on titania. 相似文献
17.
18.
Oxygen adsorption on Mo2C(0 0 0 1) has been investigated with angle-resolved photoemission spectroscopy (ARPES). When the surface is reacted with O2, the O 2p-induced states are formed at 4.1 and 5.3 eV at the point. The emissions around the Fermi level are also intensified by oxygen adsorption, which is due to the formation of a partially filled state. It is found that the reactivity of the surface toward H2O adsorption is much enhanced by pre-adsorption of oxygen. The reactivity is found to be maximized at θO ∼ 0.2. 相似文献
19.
First-principles calculations have been performed to investigate the adsorption of oxygen on unreconstructed and reconstructed Ni(1 1 0) surfaces. The energetics, structural, electronic and magnetic properties are given in detail. For oxygen adsorption on unreconstructed surface, (n×1)(n=2,3) substrate with oxygen atom on short-bridge site is found to be the most stable adsorption configuration. Whereas energetically most favorable adsorption phase of reconstructed surface is p(n×1) substrate with oxygen atom located at long-bridge site. Our calculations suggest that the surface reconstruction is induced by the oxygen adsorption. We also find there are redistributions of electronic structure and electron transfer from the substrate to adsorbate. Our calculations also indicate surface magnetic moment is enhanced on clean surfaces and oxygen atoms are magnetized weakly after oxygen adsorption. Interestingly, adsorption on unreconstructed surface does not change surface magnetic moment. However, adsorbate leads to reduction of surface magnetic moment in reconstructed system remarkably. 相似文献
20.
A simple, rigid pair-potential model is applied to investigate the dynamics of the (0 0 0 1) α-Al2O3 and α-Cr2O3 surfaces using the molecular dynamics technique. The simulations employ a two-stage equilibration process: in the first stage the simulation-cell size is determined via the constant-stress ensemble, and in the second stage the equilibration of the size-corrected simulation cell is continued in the canonical ensemble. The thermal expansion coefficients of bulk alumina and chromia are evaluated as a function of temperature. Furthermore, the surface relaxation and mean-square displacement of the atoms versus depth into the slab are calculated, and their behaviour in the surface region analysed in detail. The calculations show that even moderate temperatures (∼400 °C) give rise to displacements of the atoms at the surface which are similar to the lattice mismatch between α-alumina and chromia. This will help in the initial nucleation stage during thin film growth, and thus facilitate the deposition of α-Al2O3 on (0 0 0 1) α-Cr2O3 templates. 相似文献