首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
CoxTi1−xO2−δ films have been prepared on Si(001) substrates by sol-gel method. When heat treated in air, CoxTi1−xO2−δ films are non-ferromagnetic at room temperature. However, after further vacuum annealing or hydrogenation, CoxTi1−xO2−δ films show room-temperature ferromagnetism (RTFM). When the vacuum annealed CoxTi1−xO2−δ films are reheated in air, the magnetic moments of the films strongly reduce. After these films are vacuum annealed once again, the magnetic moments are greatly enhanced, confirming the role of vacuum annealing in ferromagnetism of CoxTi1−xO2−δ films. The x-ray diffraction (XRD), x-ray photoelectron spectroscopy (XPS) and measurements of magnetization (M) vs temperature (T) fail to detect Co clusters in the vacuum annealed and the hydrogenated CoxTi1−xO2−δ films. Oxygen vacancies are formed in CoxTi1−xO2−δ films after vacuum annealing and hydrogenation, determined by XRD and XPS measurements. These results indicate that oxygen vacancies created by vacuum annealing and hydrogenation play an important role in the generation of RTFM in CoxTi1−xO2−δ films.  相似文献   

2.
In this work, electron magnetic resonance (EMR) spectroscopy and magnetometry studies were employed to investigate the origin of the observed room-temperature ferromagnetism in chemically synthesized Sn1?x Fe x O2 powders. EMR data clearly established the presence of two different types of signals due to the incorporated Fe ions: paramagnetic spectra due to isolated Fe3+ ions and broad ferromagnetic resonance (FMR) spectra due to magnetically coupled Fe3+ dopant ions. EMR data analysis and simulation suggested the presence of high-spin (S = 5/2) Fe3+ ions incorporated into the SnO2 host lattice both at substitutional and at interstitial sites. The FMR signal intensity and the saturation magnetization M s of the ferromagnetic component increased with increasing Fe concentration. For Sn0.953Fe0.047O2 samples, well-defined EMR spectra revealing FMRs were observed only for samples prepared in the 350–600°C range, whereas for samples prepared at higher annealing temperatures up to 900°C, the FMRs and saturation magnetization were vanished due to diffusion and eventual expulsion of the Fe ions from the nanoparticles, in agreement with data obtained from Raman and X-ray photoelectron spectroscopy.  相似文献   

3.
Upon substitution of non-magnetic Al3+ for diamagnetic, low-spin, Co3+ in ferromagnetic La2MnCoO6, the ferromagnetic moment, measured at 82 K and 15 kOe, is found to increase initially with Al content and then decreases, though the magnetic transition temperature decreases continuously on increasing x in La2MnCo1−xAlxO6.  相似文献   

4.
Polycrystalline Sn1−xMnxO2 (0≤x≤0.05) diluted magnetic semiconductors were prepared by solid-state reaction method and their structural and magnetic properties had been investigated systematically. The three Mn-doped samples (x=0.01, 0.03, 0.05) undergo paramagnetic to ferromagnetic phase transitions upon cooling, but their Curie temperatures are far lower than room temperature. The magnetization cannot be attributed to any identified impurity phase. It is also found that the magnetization increases with increasing Mn doping, while the ratio of the Mn ions contributing to ferromagnetic ordering to the total Mn ions decreases.  相似文献   

5.
Co-doped TiO2 (CoxTi1−xO2, 0.05?x?0.2) films have been prepared on Si (0 0 1) substrates by sol–gel method. When heat treated in air, CoxTi1−xO2 films are non-ferromagnetic at room temperature. However, after further annealed in a flowing hydrogen atmosphere, CoxTi1−xO2 films show room-temperature ferromagnetism (RTFM). Measurements of magnetization (M) vs. temperature (T), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) fail to detect Co clusters in the hydrogenated Co0.1Ti0.9O2 films, suggesting that RTFM in the hydrogenated Co0.1Ti0.9O2 films may be intrinsic. But, metal Co appears in the hydrogenated Co0.2Ti0.8O2 films, showing that RTFM in the hydrogenated Co0.2Ti0.8O2 films is as least partly due to metal Co. These results indicate that hydrogen annealing can produce room-temperature ferromagnetism in CoxTi1−xO2 films, but it should be carefully designed to avoid the formation of metal Co in the hydrogenated CoxTi1−xO2 films.  相似文献   

6.
A series of Ni43Mn46Sn11−xSbx (x=0, 1, and 3) alloys were prepared by an arc melting method. The martensitic transition shifts to higher temperature with the increasing Sb content. The isothermal magnetization curves and Arrott plots around martensitic transition temperatures show a typical metamagnetic behavior. Under a low applied magnetic field of 10 kOe, large magnetic entropy changes around the martensitic transition temperature are 10.4, 8.9, and 7.3 J/kg K, for x=0, 1, and 3, respectively. The origin of the large magnetic entropy changes and potential application for Ni43Mn46Sn11−xSbx alloys as working substances in magnetic refrigeration are discussed.  相似文献   

7.
Sn1−xMnxO2 (x=0.01-0.05) thin films were synthesized on quartz substrate using an inexpensive ultrasonic spray pyrolysis technique. The influence of doping concentration and substrate temperature on structural and magnetic properties of Sn1−xMnxO2 thin films was systematically investigated. X-ray diffraction (XRD) studies of these films reflect that the Mn3+ ions have substituted Sn4+ ions without changing the tetragonal rutile structure of pure SnO2. A linear increase in c-axis lattice constant has been observed with corresponding increase in Mn concentration. No impurity phase was detected in XRD patterns even after doping 5 at% of Mn. A systematic change in magnetic behavior from ferromagnetic to paramagnetic was observed with increase in substrate temperature from 500 to 700 °C for Sn1−xMnxO2 (x=0.01) films. Magnetic studies reveal room-temperature ferromagnetism (RTFM) with 3.61×10−4 emu saturation magnetization and 92 Oe coercivity in case of Sn1−xMnxO2 (x=0.01) films deposited at 500 °C. However, paramagnetic behavior was observed for the films deposited at a higher substrate temperature of 700 °C. The presence of room-temperature ferromagnetism in these films was observed to have an intrinsic origin and could be obtained by controlling the substrate temperature and Mn doping concentration.  相似文献   

8.
The temperature dependence of the resistance of composite samples (1−x)La0.67Sr0.33MnO3+xYSZ with different YSZ doping level x was investigated at magnetic fields 0-3 T, where YSZ represents yttria-stabilized zirconia. Results show that the YSZ dopant does not only adjust the metal-insulator transition temperature, but also increases the magnetoresistance effect. With increase of YSZ doping level for the range of x<2%, the metal-insulator transition temperature values TP of the composites decrease, but TP increases with increase of x further for the range of x>2%. Meanwhile, in the YSZ-doped composites, a broad metal-insulator transition temperature region was found at zero and low magnetic field, which results in an obvious enhanced magnetoresistance in the temperature range 10-350 K. Specially, a larger magnetoresistance value was observed at room temperature at 3 T, which is encouraging with regard to the potential application of magnetoresistance materials.  相似文献   

9.
Co3V 2O8 is a spin- 3/2 system on a Kagomé staircase and is known to undergo two magnetic phase transitions between 6 and 11 K. The H-T phase diagram of Co3V 2O8 derived by magnetization measurements on a single crystal is presented. Additionally both ordered magnetic structures were investigated by neutron powder diffraction experiments and solved using Bertaut’s macroscopic theory. For the ferromagnetic phase the magnetic moments of the Co2+ ions were found to be 1.5(3)μB and 2.7(1)μB at 3.5 K along the crystallographic a axis for the (4a) and (8e) sites, respectively. The antiferromagnetic phase exhibits a magnetic cell with a doubled b axis with respect to the nuclear one. The magnetic moments point along the a axis being 1.8(2)μB (4a) and 1.8(1)μB (8e) at 8 K.  相似文献   

10.
Magnetization curves of Tb1−xGdxMn6Sn6 compounds (0?x?1) have been measured for aligned powder samples in the temperature range 4.2–300 K in pulsed magnetic fields up to 30 T. Temperature and concentration dependences of the magnetocrystalline anisotropy constants K1 and K2 and concentration dependence of the temperature of spontaneous spin-reorientation transition have been determined. Using these data, we estimated the contribution of the manganese and terbium atoms to the magnetic anisotropy of Tb1−xGdxMn6Sn6 and analyzed the origin of the appearance of field-induced first-order magnetic phase transition in these compounds.  相似文献   

11.
We observe a sharp increase in negative magneto-resistance ratio up to 40% for x=0.1, in La0.5Sr0.5Co1−xRuxO3 which is due to the magnetic disorder induced by an anti-ferromagnetic interaction between Co and Ru ions. We also observe a metal to insulator and a ferromagnetic to anti-ferromagnetic transition for 0≤x≤0.3. Ruthenium (IV) ion disrupts an intermediate spin state of cobalt (Co3+:t2g5eg1), forcing a double exchange mediated ferromagnetic state to an anti-ferromagnetic spin state for x≥0.2.  相似文献   

12.
Nanocrystalline spinel ferrite thin films of CoxFe3−xO4 (x=0.3x=0.3, 0.5, 0.8, and 1.0) have been prepared by RF sputtering on quartz substrate without a buffer layer at room temperature and annealed at the temperature range from 200 to 600 °C in air. The as-sputtered films exhibit the preferred orientation and the high magnetization and coercivity. After annealing, the preferred orientations become poor, but the magnetization and coercivity increase. The sample with a magnetization of 455 emu/cm3, a coercivity of 2.8 kOe, a remanence ratio of 0.72, and a maximum energy product of 2.4 MGOe has been obtained. The influence of Co ions and annealing temperature on the magnetic properties has been discussed.  相似文献   

13.
Thin films of Ti1−xCoxO2 (x=0 and 0.03) have been prepared on sapphire substrates by spin-on technique starting from metalorganic precursors. When heat treated in air at 550 and 700 °C, respectively, these films present pure anatase and rutile structures as shown both by X-ray diffraction and Raman spectroscopy. Optical absorption indicate a high degree of transparency in the visible region. Such films show a very small magnetic moment at 300 K. However, when the anatase and the rutile films are annealed in a vacuum of 1×10−5 Torr at 500 and 600 °C, respectively, the magnetic moment, at 300 K, is strongly enhanced reaching 0.36μB/Co for the anatase sample and 0.68μB/Co for the rutile one. The ferromagnetic Curie temperature of these samples is above 350 K.  相似文献   

14.
The electronic structure of polycrystalline ferromagnetic Zn1−xCoxO (0.05≤x≤0.15) and the oxidation state of Co in it, have been investigated. The Co-doped polycrystalline samples are synthesized by a combustion method and are ferromagnetic at room temperature. XPS and optical absorption studies show evidence for Co2+ ions in the tetrahedral symmetry, indicating substitution of Co2+ in the ZnO lattice. However, powder XRD and electron diffraction data show the presence of Co metal in the samples. This give evidence to the fact that some Co2+ ion are incorporated in the ZnO lattice which gives changes in the electronic structure whereas ferromagnetism comes from the Co metal impurities present in the samples.  相似文献   

15.
16.
We have synthesized three Y bMn6Sn6−xInx representatives (x=0.45, 0.80, 1.20), the first pseudo-ternary RMn6Sn6−xX′x compounds involving a divalent R metal. The crystal structure is found to evolve with the In concentration without modification of the Yb valency: Y bMn6Sn5.55In0.45 is isotypic with HoFe6Sn6 (Immm) while Y bMn6Sn5.20In0.80 and Y bMn6Sn4.80In1.20 crystallize in the TbFe6Sn6-type (Cmcm). The In content is also determining as regards the magnetic and magnetocaloric properties: Y bMn6Sn5.55In0.45 () almost behaves like a simple ferromagnet while Y bMn6Sn5.20In0.80 and Y bMn6Sn4.80In1.20 also order ferromagnetically but at significantly lower temperatures ( and 129 K, respectively) and are further characterized by the interference of low temperature antiferromagnetic interactions. The results are discussed and compared to previously published data.  相似文献   

17.
Single crystals of Bi2Sn2O7 were grown in a Bi2O3 flux. Phase transitions were identified at about 90 and 680° using X-ray, SHG, DSC, dielectric, and optical data. γ-Bi2Sn2O7, which exists above 680°C is centric and cubic with a = 10.73 Å at 700°, and it probably has the ideal pyrochlore structure. β-Bi2Sn2O7, which exists between 680° and about 90°C, is acentric but remains cubic with a = 21.40 Å. α-Bi2Sn2O7, which exists from about 90°C to below room temperature, is acentric and noncubic, probably tetragonal with a = 21.328 and c = 21.545 Å. The α-β transition is first order, and the β-γ transition appears to be second order. Substitutions of Pb2+ or Cd2+ for Bi3+ and of Ga3+, Rh3+ Sc3+, In3+, Sb5+ Nb5+ or Ta5+ for Sn4+ lower the α-β transition temperature.  相似文献   

18.
A systematic study of exchange bias in MnPd/Co and MnPd/Co1−xFex bilayers has been carried out. Very large unidirectional anisotropy constant of 2.2 erg/cm2 and the appearance of double-shifted loops, ascribed to the coexistence of positive and negative exchange bias, have been observed. The dependence of exchange bias, unidirectional anisotropy constant and coercivity on thickness, temperature, annealing regime and Fe content has been investigated and discussed.  相似文献   

19.
Magnetic properties have been investigated on Mn doped TiO2(Ti0.98Mn0.02O2) bulk samples prepared by solid state reaction, which were sintered at different temperature ranging from 450 °C to 900 °C in air and argon atmosphere, respectively. The results show that the magnetic properties were strongly dependent on the sintering temperature and atmosphere. For samples sintered in air, the magnetization initially increase with the increase of sintering temperature up to 600 °C and thereafter it decrease. While the magnetization of samples sintered in argon atmosphere decreases monotonically with the increase of sintering temperature. Furthermore, for samples sintered at 600 °C in air, the magnetic susceptibility exhibits a dominant Curie-Weiss behaviour and no magnetic transition is observed over the temperature range from 10 to 300 K. In contrast, for samples sintered in argon atmosphere, besides the magnetic transition near 45 K perhaps caused by Mn3O4, another magnetic transition appears near room temperature.  相似文献   

20.
Both oxygen and calcium play important roles in inducing superconductivity in Y Ba2Cu3Oy (YBCO), which is an antiferromagnetic insulator at low O and Ca content. O induces superconductivity in Ca-free YBCO, while Ca does similarly in oxygen-deficient YBCO. For doping oxygen HgO was used as it decomposes at 476 °C into Hg, which escapes from the matrix leaving the crystal unaltered, and O, which provide a way to dope O in YBCO. Considering these facts, polycrystalline samples of Y 1−xCaxBa2Cu3Oy with x=0, 0.1 and 0.2 with and without HgO addition were prepared through a solid-state reaction method. The samples were sintered at 950 °C in open atmosphere. These synthesized samples were characterized through using the X-ray diffraction technique (XRD) for phase evaluation, scanning electron microscopy (SEM) for grain morphology, energy dispersive X-ray analysis (EDX) for compositional analysis and the four-contact measurement technique for determining the superconducting transition temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号