首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We perform molecular-dynamics calculations to investigate the structural transformation of a copper cluster containing 201 atoms in its melting process within the framework of the embedded-atom method (EAM). Concerning melting, the obtained results reveal that its structural changes are different from those of larger-size clusters containing several hundreds or more atoms and smaller-size clusters containing tens of atoms. The melting process of this Cu201 cluster involves three stages, firstly some atoms in inner regions of this cluster move into outer regions accompanying the structural transformation of the local atom packing, followed by the continuous interchange of atomic positions, and finally this cluster is wholly disordered. During the temperature increase, the structural changes of different regions determined by atom density profiles result in apparent increases in internal energy. By decomposing peaks of pair distribution functions (PDFs) according to the pair analysis (PA) technique, the local structural patterns are identified for the melting of this cluster.  相似文献   

2.
We investigate the growth process and structural properties of phosphorus incorporated tetrahedral amorphous carbon (ta-C:P) films which are deposited at different substrate biases by filtered cathodic vacuum arc technique with PH3 as the dopant source. The films are characterized by X-ray photoelectron spectroscopy (XPS), atomic force microscopy, Raman spectroscopy, residual stress measurement, UV/VIS/NIR absorption spectroscopy and temperature-dependent conductivity measurement. The atomic fraction of phosphorus in the films as a function of substrate bias is obtained by XPS analysis. The optimum bias for phosphorus incorporation is about −80 V. Raman spectra show that the amorphous structures of all samples with atomic-scaled smooth surface are not remarkably changed when PH3 is implanted, but some small graphitic crystallites are formed. Moreover, phosphorus impurities and higher-energetic impinging ions are favorable for the clustering of sp2 sites dispersed in sp3 skeleton and increase the level of structural ordering for ta-C:P films, which further releases the compressive stress and enhances the conductivity of the films. Our analysis establishes an interrelationship between microstructure, stress state, electrical properties, and substrate bias, which helps to understand the deposition mechanism of ta-C:P films.  相似文献   

3.
We report measurements on the superconducting properties of V/Fe superlattices with various layer thicknesses. These samples were prepared with a novel UHV evaporator which can produce up to twenty different samples in the same run. The Fe layer, a strong pair breaker, suppresses the superconducting transition temperature in a systematic way. When the V layer thickness is on the order of the BCS coherence length and the Fe layer is only a few atomic planes thick, a 2D–3D crossover has been observed in the temperature dependence of the parallel upper critical field HC2∥. This implies the coexistence of superconductivity and ferromagnetismm. We observe three dimensional behavior for thinner Fe layers (~1 atomic plane) and two dimensional behavior for thicker Fe layers (greater than 10 atomic planes).  相似文献   

4.
Single core stainless steel (SS) sheathed MgB2 tapes have been made by the powder-in-tube (PIT) method using commercial Mg and B powders in two series, one with nominal composition and the other with excess Mg. The electrical resistivity and susceptibility measurements have been carried out to evaluate residual resistivity ratio (RRR), the coherence length ξ(0) and critical current density JC(T) in these tapes. Detailed structural analysis of the core material has been carried out to correlate the superconducting properties with the crystallinity. In the optimized growth condition the MgB2 tapes exhibited an estimated JC of ∼1.4×107 A/m2 at 39.45 K in zero field and the zero temperature coherence length is found to be ∼68 Å. MgB2 tapes fabricated from starting powders having nominal Mg-composition have been shown to exhibit higher JC than those fabricated from excess magnesium composition of the starting powders. The strained lattice together with the presence of nanosized MgO inclusion having size smaller than the coherence length, are shown to be responsible for the observed higher JC.  相似文献   

5.
张林  王绍青  陈难先 《中国物理 B》2012,21(3):33601-033601
The differences in structural change between Au225 and Au369 clusters with their (111) facets supported on MgO(100) surfaces at 5 K are studied by using molecular-dynamics simulations with the atomic interchange potentials of the Au/MgO interface. The parameters are obtained from the ab initio energies using the Chen-Möbius inversion method. Analyses of the pair distribution functions show that the two Au clusters use different deformation processes to adjust the distances between the interface atoms, owing to the misfit between the atom distances among the clusters and the substrates. The local structural changes are identified by atomic density profiles.  相似文献   

6.
Amorphous nitrogen-rich carbon nitride (CNx) films have been prepared by inductively coupled plasma chemical vapour deposition (ICP-CVD) utilizing transport reactions from a solid carbon source. The nitrogen atomic fraction N/(C+N) is about 1 or even higher as detected by various surface and bulk sensitive methods. An investigation of the chemical bonding structure showed that the films are composed of >C=N units with a small fraction of C≡N groups. Based on these findings, several structural units derived from cis- and trans-conjugated carbon–nitrogen chains are proposed. The optical properties of the CNx films were studied by transmission spectroscopy and spectral ellipsometry; the optical Tauc gap was determined to 2.1±0.05 eV. The photoluminescence characteristics were measured at three different excitation wavelengths (476, 488 and 515 nm) and revealed two individual contributions. These data are interpreted in terms of the different structural units comprising the nitrogen-rich CNx films. Received: 14 July 2000 / Accepted:17 July 2000 / Published online: 22 November 2000  相似文献   

7.
The atomic structure of YBa2Cu3O y fine-crystalline HTSC samples with various average crystallite sizes ??D?? ranging from 0.4 to 2 ??m and an oxygen concentration y close to the optimal value for superconductivity (y ?? 6.93) is investigated by the neutron diffraction technique. We have found some effects associated with the redistribution of cations and oxygen atoms and with variations in the positions of atomic layers in the unit cell, which are not observed in macrocrystalline samples. In all probability, these effects appear due to nonequilibrium conditions of synthesis required for obtaining this compound in the fine-crystalline state. The results have made it possible to explain the peculiar physical properties of fine-crystalline YBa2Cu3O y samples (in particular, the coexistence of high superconducting transition temperatures T c and noticeably lower values of magnetization in strong magnetic fields for T < T c ). It is shown that a nanoscale structural inhomogeneity exists in fine-crystalline YBa2Cu3O y samples with the optimal oxygen content and changes the fundamental superconducting parameters, viz., the magnetic field penetration depth and the coherence length.  相似文献   

8.
High-quality thin Fe films were deposited on MgO(001) and Al2O3(1120) substrates in the thickness range from 7 to 50 nm. The structural properties have been studied by out-of-plane and in-plane X-ray scattering experiments. From the out-of-plane measurements the electron density profile was determined together with interface and surface roughness parameters. Fe on Al2O3 grows along the [110]-direction with a structural coherence length comprising about the total film thick ness and a very small mosaicity. From in-plane scattering experiments a three-domain structure was observed. On MgO(001) substrates Fe grows in the [001]-direction, with the Fe [100]-axis parallel to the MgO [110]-axis. On both substrates, the Fe films exhibit a very small surface and interface roughness, indicative for a high quality of the sputtered samples.  相似文献   

9.
Xray Absorption Fine Structure (XAFS) measurements of the local atomic structure of perovskite crystals undergoing various structural phase transitions are summarized and discussed. The results show that the local structure of crystals undergoing ferroelectric antiferroelectric and antiferrodistortive transitions is distorted in a disordered fashion far above the transition to the high symmetry phase. The size of the distortions is a large fraction of the distortion at temperatures far below T c. Based on these results we propose a model of ferroelectricity which accounts quantitatively for the temperature dependence of the dielectric function the soft mode frequency, the imaginary part of the dielectric constant and the central peak in PbTiO3 and KNbO3.  相似文献   

10.
Superlattices of [001]fcc Co/Pd with varying Co thicknesses from one to eight atomic layers per modulation period were epitaxially grown on NaCl by vapour deposition in UHV. Transmission electron diffraction indicates lattice coherence between the Co and the Pd layers for Co thicknesses up to six atomic layers. If deposited at a substrate temperatureT s=50°C, only the superlattices containing Ci-monolayers show perpendicular magnetization. By raisingT s to 200°C, the perpendicular anisotropy for Co monolayers is increased, and is also observed for Co bilayers. We suggest that this is due tolayer smoothening, which increases Néel's interface anisotropy. For more than 6 atomic layers of Co a loss of coherence is observed atT s=50°C, accompanied by a structure transformation to hcp Co with a (0001)Co(111)Pd orientation.Non-epitaxial polycrystalline [111]-multilayers have a different anisotropy versus thickness behaviour. For such multilayers the range of Co thicknesses giving perpendicular magnetization is extended from 8 Å up to 12 Å atT s=200°C. The different behaviour of the single crystal [001] films is caused by a strong volume contribution to the anisotropy, which favours in-plane magnetization, opposing the perpendicular interface anisotropy. This easy-plane term is attributed to magneto-elastic anisotropy due to stretching of the Co layers, via a positive magnetostriction.  相似文献   

11.
The atomic structure of amorphous Tb20Fe80 thin films has been studied by Extended X-ray Absorption Fine Structure (EXAFS) of both FeK and TbL III absorption edges. The local site geometry around Fe atoms shows predominantly Fe nearest neighbors with an Fe-Fe distance distribution centered on 2.50±0.02 Å and a coordination number of 9.1±1. In contrast, the radial structure function (RSF) obtained at the Tb edge is broad and asymmetric. The peak in the RSF corresponds to a Tb-Fe near neighbor distance of 2.94±0.1 Å with no evidence for Tb-Tb nearest neighbor coordination. The width and the shape of the RSF suggest that the Tb-Fe atomic environment is anisotropic and strained probably as a consequence of the growth process. This distorted atomic environment is suggested to be responsible for the magnetic anisotropy in these alloys. Thermal annealing at 200 °C leads to reduction inK u. We propose that this results from reordering of the Tb local environment such that the average structural anisotropy in the distribution is reduced. EXAFS data show that annealing at 400°C causes precipitation of bcc polycrystalline Fe. The addition of 7 at.% Au to the alloy prevents this recrystallization and preserves the amorphous state but does not prevent the structural relaxation which reducesK u at lower temperatures.  相似文献   

12.
Short-range order and local atomic configuration in yttrium-aluminosilicate glasses doped with gadolinium were studied by infrared (IR) spectroscopy, 27Al magic-angle-spinning nuclear magnetic resonance (MAS-NMR) and Gd3+ electron spin resonance (EPR) on as-prepared and heat-treated samples.A small amount of yttrium was replaced by gadolinium in the host glass because Y3+ and Gd3+ cations are quite similar and gadolinium ions can be used as structural sensor in electron paramagnetic resonance measurements. The results evidence weak changes in the structure of as-prepared glasses with respect to the coordination of aluminium atoms produced by gadolinium doping (0.2 and 0.5 mol%). New IR bands recorded from heat-treated samples are associated with stretching modes of hexacoordinated aluminium in AlO6 octahedra. The effect of the heat treatment on aluminium environment is estimated by analysing the relative intensity of the component lines of simulated 27Al MAS-NMR spectra. High-coordinated AlOn species were identified in all samples. EPR results evidence the increase of the number of gadolinium sites with weak crystal field as effect of the structural relaxation.  相似文献   

13.
The structural and optical characteristics of porous GaN prepared by Pt-assisted electroless etching under different etching durations are reported. The porous GaN samples were investigated by scanning electron microscopy (SEM), high-resolution X-ray diffraction (HR-XRD), photoluminescence (PL) and Raman scattering. SEM images indicated that the density of the pores increased with the etching duration; however, the etching duration has no significant effect on the size and shape of the pores. XRD measurements showed that the (0 0 0 2) diffraction plane peak width of porous samples was slightly broader than the as-grown sample, and it increased with the etching duration. PL measurements revealed that the near band edge peak of all the porous samples were red-shifted; however, the porosity-induced PL intensity enhancement was only observed in the porous samples; apart from that, two additional strain-induced structural defect-related PL peaks observed in as-grown sample were absent in porous samples. Raman spectra showed that the shift of E2 (high) to lower frequency was only found in samples with high density of pores. On the contrary, the absence of two forbidden TO modes in the as-grown sample was observed in some of porous samples.  相似文献   

14.
Li Niu  Jia-Qi Zhu  Xiao Han  Wei Gao 《Physics letters. A》2009,373(29):2494-2500
The structural, electronic and vibrational properties of a series of heavily B-doped diamond models have been investigated using the density functional theory within a local density approximation. The doped models C64 − nBn (n=1-3) were constructed using supercell techniques. The structural and electronic calculations confirmed that the B dimers are always energetically stable and electrical inactive. The superconducting transition temperature TC is not only decided by the B concentration, but also by the lattice configurations of boron atoms. The vibrational frequencies and eigenmodes were determined using the linear response approach, while Raman intensities were obtained by the second response method. The Raman analysis in terms of atomic vibrations found that the “500 cm−1” and “1230 cm−1” bands are both superposed bands including not only C vibrations but also B-B vibrations and B-C vibrations, respectively. The calculated Raman spectra with isotopic substitutions are in excellent agreement with corresponding experimental results. The reasonable explanation was provided for no obvious Raman shift of main bands from 10B12C to 11B12C model.  相似文献   

15.

The structural state in nanoscaled SiO2 is probed experimentally via X-ray diffraction and the simulation method. The aerosil nanoparticles and nanoparticles synthesized via the electron beam evaporation are compared. The nanoparticles for all samples are shown to be in the amorphous state. The amorphous state of a SiO2 unit lattice is simulated via the molecular dynamics. The full-profile refinement of parameters for a simulated SiO2 phase (the Rietveld method) has allowed the complete structural information to be established at varying the specific surface. The unit cell parameters, the spatial atomic distribution and the degree of cell node occupation are determined, as well. The specific surface area is shown to decrease in aerosil nanoparticles and to increase in tarkosil nanoparticles with the increasing binding energy of atoms in a cell.

  相似文献   

16.
Local structure of the nanostructured LaNi5 alloys, prepared by ball-milling, has been studied using La L3-edge extended X-ray absorption fine structure spectroscopy. The near-neighbor distances tend to decrease with the ball-milling, and the mean square relative displacements (MSRD) show substantial increase suggesting an increased atomic disorder. High temperature annealing helps in partial recovery of atomic order in the ball-milled samples for milling times upto 20 h, however, the long-time ball-milled samples seems to gain only a local random order. The results suggest that reduced unit-cell volume together with large atomic-disorder might be causing a higher energy-barrier for the hydride-phase formation in the long time ball-milled LaNi5 powders.  相似文献   

17.
We examined the temperature-dependent electrical, optical, and structural properties of VO2 on ZnO nanorods with different lengths in the temperature range from 30 to 100 °C. ZnO nanorods with a uniform length were grown on Al2O3 substrates using a metal organic chemical vapor deposition, and subsequently, VO2 was ex-situ deposited on ZnO nanorods/Al2O3 templates using a sputtering deposition. The optical properties of the VO2/ZnO nanorods were measured simultaneously with direct current (DC) resistance using the reflectivity of an infrared (IR) laser beam with a wavelength of 790 nm. The local structural properties around V atoms of VO2/ZnO nanorods were simultaneously measured with the DC resistance using x-ray absorption fine structure at the V K edge. Direct comparison of the temperature-dependent resistance, IR reflectivity, and local structure reveals that an optical phase transition first occurs, a structural phase transition follows, and an insulator-to-metal transition finally appears during heating.  相似文献   

18.
In this paper, we consider the model which consists of a degenerate Raman process involving two degenerate Rydberg energy levels of an atom interacting with a single-mode cavity field. The influence of the atomic coherence on the von Neumann entropy of the atom and the atomic inversion is investigated. It is shown that the atomic coherence decreases the amount of atom-field entanglement. It is also found that the collapse and revival times are independent of the atomic coherence, while the amplitude of the revivals is sensitive to this coherence. Moreover, the Q function and the entropy squeezing of the field are examined. Some new conclusions can be obtained.  相似文献   

19.
The characteristics determining different contributions to the magnetic susceptibility at T > T C (Pauli susceptibility, coherence length at T = 0, and Curie constant) as functions of the degree of structural disorder have been analyzed for high-temperature superconducting YBa2Cu3O y samples ( y ≈ 6.92, T C ≈ 92 K) with micrometer and submicron average grain sizes D av. It is shown that the decrease in these characteristics, which is observed in fine-grained samples with a decrease in D av, occurs in various ways, depending on the number and type of oxygen vacancy ordering in chain planes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号