首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Graphitic carbon nitride (g-C3N4) has been synthesized via a two-step pyrolysis of melamine (C3H6N6) at 800°C for 2 h under vacuum conditions. X-ray diffraction (XRD) patterns strongly indicate that the synthesized sample is g-C3N4. Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) morphologies indicate that the product is mainly composed of graphitic carbon nitride. The stoichiometric ratio of C:N is determined to be 0.72 by elemental analysis (EA). Chemical bonding of the sample has been investigated by X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR). Electron energy loss spectroscopy (EELS) verifies the bonding state between carbon and nitrogen atoms. Optical properties of the g-C3N4 were investigated by PL (photoluminescence) measurements and UV–Vis (ultraviolet–visible) absorption spectra. We suppose its luminescent properties may have potential application as component of optical nanoscale devices. Thermogravimetric analysis (TGA) and differential thermal analysis (DTA) were also performed.  相似文献   

2.
吴雪炜  吴大建  刘晓峻 《物理学报》2010,59(7):4788-4793
利用X射线衍射谱、拉曼光谱和紫外-可见光吸收光谱研究了硼(氮、氟)掺杂对TiO2纳米颗粒光学性能的影响.X射线衍射谱和拉曼光谱结果表明,掺硼(氮、氟)对TiO2纳米颗粒的锐钛矿相晶体结构无明显影响,而其锐钛矿晶格出现畸变(c/a值增大),这被归因于掺杂原子对TiO2纳米颗粒表面氧原子缺位沿晶格c轴方向的占据.另外,掺硼(氮、氟)TiO2纳米颗粒吸收带红移与TiO相似文献   

3.
We have synthesized boron carbon nitride thin films by radio frequency magnetron sputtering. The films structure and composition were characterized by X-ray diffraction, Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. The results indicate that the three elements of B, C, N are chemically bonded with each other and atomic-level hybrids have been formed in the films. The boron carbon nitride films prepared in the present experiment possess a disordered structure. The influence of PN2/PN2+Ar, total pressure and substrate bias voltage on the composition of boron carbon nitride films is investigated. The atomic fraction of C atoms increases and the fractions of B, N decrease with the decrease of PN2/PN2+Ar from 75% to 0%. There is an optimum total pressure. That is to say, the atomic fractions of B, N reach a maximum and the fraction of C atoms reaches a minimum at the total pressure of 1.3 Pa. The boron carbon nitride films exhibit lower C content and higher B, N contents at lower bias voltages. And the boron carbon nitride films show higher C content and lower B, N contents at higher bias voltages.  相似文献   

4.
The one-step method of carbon nanotubes filled with continuous cobalt nanowires (CoF-CNT) synthesis is presented. Co/ZSM-5 (8 wt% Co) was used as catalyst for CoF-CNT production by methane decomposition at the temperature of 400 °C and 800 °C at atmospheric pressure in a conventional gas-flow system. The average diameter of the CoF-CNT is about 25 and 40 nm for products obtained at 400 °C and at 800 °C, respectively. The average size of coherently scattering domains along the normal to graphite layers L c , the interlayer spacing d 002, the graphitization degree of carbon, and the relative intensities of the G and D bands in Raman spectroscopy were determined to characterize the quality of carbon. It was proved that cobalt-filled carbon nanotubes can be produced by a simple method. The results of XRD, FE-SEM, and TEM show that CoF-CNT can be obtained even at 400 °C by catalytic decomposition of methane. On the basis of XRD, TEM, Raman spectroscopy was found that at a temperature of 800 °C, a better quality of carbon was produced.  相似文献   

5.
Magnetic carbon nanotubes consisting of multi-wall carbon nanotubes (MWNTs) core and Fe3O4 shell were successfully prepared by in situ thermal decomposition of Fe(acac)3 or FeCl3 or Fe(CO)5 in 2-pyrrolidone containing acid treated MWNTs at 240 °C with the protection of nitrogen gas. The samples were characterized by TEM, XRD, SEAD, XPS and superconducting quantum interference device. Also, their biocompatibility was compared with naked carbon nanotubes. The results showed that after coated with Fe3O4 nanoparticles, the obtained magnetic carbon nanotubes show superparamagnetic characteristic at room temperature, and their blocking temperature is about 80 K. The magnetic properties of the nanotubes are relevant to the content of magnetic particles, increasing content of magnetic nanoparticles leads to higher blocking temperature and saturation magnetization. The results of antimicrobial activities to bacterial cells (Escherichia coli) showed that the MWNTs have antimicrobial activity, while the magnetic nanotubes are biocompatible even with a higher concentration than that of MWNTs.  相似文献   

6.
Laser irradiation of solid nitrogen containing cyanuric triazide (C3N12) could generate highly reactive carbon nitride species, NCN and dicyanocarbodiimide. These species were generated in the solid nitrogen at 20 K. After laser photolysis, generated reactive species were concentrated by removal of nitrogen, and converted into a film-like product. Thus, the obtained product was characterized by means of FTIR, SEM, and XPS measurements. The product was assigned to amorphous carbon nitride with relatively high nitrogen content (N/C=0.91.3). PACS 81.15.Fg; 82.33.-z; 68.55.Nq  相似文献   

7.
Spinel Li4Ti5O12/C powders were synthesized successfully by a simple rheological phase method using polyvinylbutyral (PVB) as both template and carbon source. The structure and morphology characteristics of the composite were investigated by X-ray diffraction (XRD), field emission scanning electron microscopy and transmission electron microscopy. The XRD results showed that the composite had a good crystallinity. Its average particle size was about 2.1 μm with a narrow size distribution as a result of homogeneous mixing of the precursors. The in situ carbon coating produced by decomposition of PVB played an important role in improving electrical conductivity, thereby enhancing the rate capacity of Li4Ti5O12 as anode material in Li-ion batteries. The Li4Ti5O12/C composite, synthesized at 800 °C for 15 h under argon, containing 0.98 wt% of carbon, exhibited better electrochemical properties in comparison with the pristine Li4Ti5O12, which could be attributed to the enhanced electrical conductive network of the carbon coating on the particle surface.  相似文献   

8.
Polycrystalline CdS:In thin films were prepared by the Spray pyrolysis technique (SP) at a substrate temperature Ts=490 °C. The effects of annealing in nitrogen atmosphere at 400 °C and HCl-etching on the electrical and structural properties of the films were investigated. The electrical properties were studied through the analysis of the I-V curves, while the structural properties were studied through the analysis of the X-ray diffraction (XRD) patterns and the scanning electron microscope (SEM) images. An increase in the films’ resistivity was occurred after annealing and/or HCl-etching, which was accompanied by changes in the XRD patterns and SEM images. These changes were related to a phase change from the mixed (cubic and hexagonal) phase to the hexagonal phase which was expected to occur during the aforementioned processes. The X-ray diffraction (XRD) patterns and the scanning electron microscope images confirm this expectation.  相似文献   

9.
Ti-Cx-Ny thin films with different nitrogen contents were deposited by way of incorporation of different amounts of nitrogen into TiC1.02 using unbalanced reactive unbalanced dc magnetron sputtering method. X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), high-resolution transmission electron microscopy (HRTEM) and microindentation methods were used to investigate their phase configurations, nanostructures and mechanical behaviors in order to investigate their dependences on nitrogen content. The result indicated that the nitrogen content had a significant effect on phase configuration, nanostructure and mechanical behaviors of Ti-Cx-Ny thin films. The nitrogen-free TiC1.02 films exhibited a polycrystallite with nano-grains. On one hand, incorporated nitrogen substituted C in TiC1.02, producing Ti(C,N), and subsequently linked to the substituted C, forming C-N. On the other hand, the substituted C lined to each other, forming C-C. As a result, nanocomposite thin films consisting of nanocrystalline Ti(C,N) and amorphous (C, C-N) were produced. With further incorporation of nitrogen more C was substituted, accompanying with formation of more amorphous matrices and decrease of size of nanocrystalline Ti(C,N). The trend was enhanced with further increase of nitrogen content. A microhardness maximum of ∼58 GPa was obtained in nitrogen-free TiC1.02 thin films. This value was linearly decreased with incorporation of N or increase of N content, and finally a hardness value of about 28 GPa was followed at a N content of ∼25 at.%. Both elastic modulus and residual compressive stress values exhibited similar trends.  相似文献   

10.
First principles FLAPW-GGA calculations have been performed to understand the peculiarities of stability, elastic, electronic properties and chemical bonding for cubic carbides of four noble metals M=Rh, Pd, Ir and Pt depending on carbon stoichiometry: MC versus M4C. Our main findings are as follows: (i) in contrast to mono-carbides MC with positive formation energies Eform>0, carbon-deficient sub-carbides M4C are stable (Eform<0), thus carbon stoichiometry is one of the major factors determining successful synthesis of these materials, and (ii) as distinct from the majority of other 3d-5d metals (including Pd and Pt examined here), an unusual effect of Rh and Ir “metallization” and the increasing of ductility for these metals owing to the introduction of carbon has been established.  相似文献   

11.
A magnetic composite of nitrogen-doped carbon nanotubes (CNx) decorated with nickel nanoparticles was synthesized by a chemical precipitation and deoxidization method. The decorated CNx were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and vibrating sample magnetometer (VSM). The XRD pattern showed that CNx, nickel nanoparticles and little nickel oxides coexisted in the composite, TEM observation indicated that nickel nanoparticles were highly dispersed on the outer walls of CNx, Magnetic measurements by VSM demonstrated that the saturated magnetization and remanence of CNx were improved, while the coercivity was lowered after decorating with nickel nanoparticles.  相似文献   

12.
The series of the hybrids (CnH2n+1NH3)2FeCl4, where n=2, 4, 6, 8, 10 and 12, were synthesized in HCl solutions. The optimum conditions of synthesis were investigated including the sequence of adding reactants, the stoichiometric ratio of the reactants, the reaction time and the drying procedures. The results demonstrate that the order of adding reactants, the drying temperature and drying time have little effect on the structures of the products. But for the hybrids of n?10, longer reaction time is needed to form the layered structures. The X-ray diffraction (XRD) patterns and the images of scanning electron microscopy of the products demonstrate that the hybrids crystallize well with typical layered structures. Chemical analysis of C, H and N confirms that the hybrids consist of the elements in the ratio of the molecular formulas. The d values, the interlayer distance between the two adjacent inorganic sheets of each hybrid, are obtained from the XRD patterns and they suggest that the organic chains interdigitate between the inorganic sheets. The longer the organic chains are, the more interdigitations there are. This can be explained by the different interaction strengths between the organic species when the chain lengths change. These different interactions can also explain the phenomena observed in the synthesis and the decomposing temperatures of the hybrids.  相似文献   

13.
Amorphous nitrogen-rich carbon nitride (CNx) films have been prepared by inductively coupled plasma chemical vapour deposition (ICP-CVD) utilizing transport reactions from a solid carbon source. The nitrogen atomic fraction N/(C+N) is about 1 or even higher as detected by various surface and bulk sensitive methods. An investigation of the chemical bonding structure showed that the films are composed of >C=N units with a small fraction of C≡N groups. Based on these findings, several structural units derived from cis- and trans-conjugated carbon–nitrogen chains are proposed. The optical properties of the CNx films were studied by transmission spectroscopy and spectral ellipsometry; the optical Tauc gap was determined to 2.1±0.05 eV. The photoluminescence characteristics were measured at three different excitation wavelengths (476, 488 and 515 nm) and revealed two individual contributions. These data are interpreted in terms of the different structural units comprising the nitrogen-rich CNx films. Received: 14 July 2000 / Accepted:17 July 2000 / Published online: 22 November 2000  相似文献   

14.
Carbon nitride thin films deposited by dc unbalanced magnetron sputtering have been analyzed by high-resolution X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy. The XPS data show that N 1s binding states depend on substrate temperature (Ts). By comparison with the Raman spectra, N 1s binding states are assigned in which nitrogen atoms are mainly bound to sp2 and sp3 carbon atoms at Ts = 100°C, whereas at Ts = 500°C nitrogen atoms are mainly bonded to sp2, sp3 and sp1 carbon atoms.  相似文献   

15.
Carbon nanotubes (CNT) coated with LiMn1-x Fe x PO4 (0.2?≤?x?≤?0.8), as possible cathode materials, was synthesized by using a sol–gel process (Polyol method), after annealing under flowing nitrogen. X-ray diffraction (XRD) patterns of the composites confirmed the formation of the olivine structured LiMn1-x Fe x PO4 phase and no secondary phases were detected. The morphological investigation revealed the formation of agglomerates with particles size ranging between 300 and 700 nm. XRD investigation of composites shows difference of the morphology by doping CNT and carbon black in the composites. Transmission electron microscopy shows the growth of nano-sized particles on CNT (20–70 nm) and the agglomeration of primary particles to form secondary particles. The X-ray photoelectron spectroscopy showed that the Fe and Mn ions are in divalent states in the LiMn1-x Fe x PO4 composites. The cyclic voltamograms showed the oxidation peaks of iron and manganese ions at 3.53–3.63 and 4.05–4.33 V, respectively, while the reduction peaks were found at 3.21–3.42 V (iron reduction) and 3.85–3.93 V (manganese reduction) depending on the iron content in the composition. The LiMn0.6Fe0.4PO4/CNT composite (x?=?0.4) (with 20 %?wt CNT) delivered a specific capacity of 120 mAhg?1 (at a discharge rate of C/20 and RT).  相似文献   

16.
Micro- and nanotubes of an amorphous carbon nitride material were synthesized by metathesis reactions between cyanuric chloride (C3N3Cl3) and different nitrogen sources, such as Li2(CN2) or Li3(BN2). The intermediate formation of needle-shaped crystals of N(C3N3Cl2)3 was always observed in our reactions, and investigated with respect to their role as a template in the formation of tubes. Chemical analyses of the micro- and nanotubes reveal carbon to nitrogen ratios near 3:4, consistent with the suspected material C3N4. Synthesized carbon nitride materials were thermally stable up to 600 °C in inert atmosphere. They were inspected by a number of physical measurements, mainly using TEM, EDX and IR investigations.  相似文献   

17.
XC38 carbon steel was nitrided in a low-pressure R.F. plasma using a mixture of 60% N2-40% H2 without cathodic bias on the samples. The experiments were carried out at different temperatures for various time durations. The generated nitride layers were characterized by SEM observations, XRD and GDOS analyses. These analyses indicate that the compound layer was composed of the γ′-Fe4N phase with a surface content of N close to 6 wt%. An approach was used to study the growth kinetics of the compound layer at 500 °C. Furthermore, it was concluded that its kinetics follows a power law, which deviates from the classical parabolic growth.  相似文献   

18.
NbNx films were deposited on Nb substrate using pulsed laser deposition. The effects of substrate deposition temperature, from room temperature to 950 °C, on the preferred orientation, phase, and surface properties of NbNx films were studied by X-ray diffraction, atomic force microscopy, and electron probe micro analyzer. We find that the substrate temperature is a critical factor in determining the phase of the NbNx films. For a substrate temperature up to 450 °C the film showed poor crystalline quality. With temperature increase the film became textured and for a substrate temperature of 650−850 °C, mix of cubic δ-NbN and hexagonal phases (β-Nb2N + δ′-NbN) were formed. Films with a mainly β-Nb2N hexagonal phase were obtained at deposition temperature above 850 °C. The c/a ratio of β-Nb2N hexagonal shows an increase with increased nitrogen content. The surface roughness of the NbNx films increased as the temperature was raised from 450 to 850 °C.  相似文献   

19.
The graphitization index provided by X-ray diffraction (XRD) and Raman spectrometry for reticulated vitreous carbon (RVC) substrates, carbonized at different heat treatment temperatures (HTT), is investigated. A systematic study of the dependence between the disorder-induced D and G Raman bands is presented. The crystallite size La was obtained for both X-ray diffraction and Raman spectrometry techniques. Particularly, the validity for La determination, from Raman spectra, is pointed out comparing the commonly used formula based on peaks amplitude ratio (ID/IG) and the recent proposed equation that uses the integrated intensities of D and G bands. The results discrepancy is discussed taken into account the strong contribution of the line broadening presented in carbon materials heat treated below 2000 °C.  相似文献   

20.
Amorphous carbon nitride (a-CNx) thin films have been synthesised by three different deposition techniques in an Ar/N2 gas mixture and have been deposited by varying the percentage of nitrogen gas in the mixture (i.e. the N2/Ar + N2 ratio) from 0 to 10%. The variation of the electrical conductivity and the gap values of the deposited films versus the N2/Ar + N2 ratio were investigated in relation with their local microstructure. Film composition was analysed using Raman spectroscopy and optical transmission experiments. The observed variation of electrical conductivity and optical properties are attributed to the changes in the atomic bonding structures, which were induced by N incorporation, increasing both the sp2 carbon content and their relative disorder. The low N content samples seem to be an interesting material to produce films with interesting properties for optoelectronic applications considering the facility to control the gas composition as a key parameter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号