共查询到20条相似文献,搜索用时 15 毫秒
1.
We synthesized the Mn-doped Mg(In2−xMnx)O4 oxides with 0.03?x?0.55 using a solid-state reaction method. The X-ray diffraction patterns of the samples were in a good agreement with that of a distorted orthorhombic spinel phase. Their lattice parameters and unit-cell volumes decrease with x due to the substitution of the smaller Mn3+ ions to the larger In3+ ions. The undoped MgIn2O4 oxide presents diamagnetic signals for 5 K?T?300 K. The M(H) at T=300 K reveals a fairly negative-sloped linear relationship. Neither magnetic hysteresis nor saturation behavior was observed in this parent sample. For the Mn-doped samples, however, positive magnetization were observed between 5 and 300 K even if the x value is as low as 0.03. The mass susceptibility enhances with Mn content and it reaches the highest value of 1.4×10−3 emu/g Oe (at T=300 K) at x=0.45. Furthermore, the Mn-doped oxides with x=0.06 and 0.2, respectively, exhibit nonlinear magnetization curves and small hysteretic loops in low magnetic fields. Susceptibilities of the Mn-doped samples are much higher than those of MnO2, Mn2O3 oxides, and Mn metals. These results show that the oxides have potential to be magnetic semiconductors. 相似文献
2.
We have demonstrated the crystalline ZnO-Al2O3 core-shell nanowire structure by atomic layer deposition (ALD) at a temperature 100 °C. The core-shell structure could have potential applications in the fabrication of ZnO field effect transistor. After dissolving the ZnO core, shape defined, rigid and robust crystalline Al2O3 shelled nanostructures have been fabricated. Nanowire ZnO nanostructures have been replicated by alumina shell. This is one of the most effective techniques for producing core-shell or shell/hollowed nanostructures of any desired objects. The Al2O3 shelled nanostructures could have potential applications as space confined nanoreactors, drug delivery, nanofluidic channels and optical transmitting. 相似文献
3.
Recently, we have discovered a new type of first order phase transition around 120 K for (n-C3H7)4N[FeIIFeIII(dto)3] (dto=C2O2S2), where the charge transfer transition between FeII and FeIII occurs reversibly. In order to elucidate the origin of this peculiar first order phase transition. Detailed information about the crystal structure is indispensable. We have synthesized the single crystal of (n-C3H7)4N[CoIIFeIII(dto)3] whose crystal structure is isomorphous to that of (n-C3H7)4N[FeIIFeIII(dto)3], and determined its detailed crystal structure. Crystal data: space group P63, a=b=10.044(2) Å, c=15.960(6) Å, α=β=90°, γ=120°, Z=2 (C18H28NS6O6FeCo). In this complex, we found a ferromagnetic transition at Tc=3.5 K. Moreover, on the basis of the crystal data of (n-C3H7)4N[CoIIFeIII(dto)3], we determined the crystal structure of (n-C3H7)4N[FeIIFeIII(dto)3] by simulation of powder X-ray diffraction results. 相似文献
4.
Magnetization of the ZnFe2O4 sample of average size 4 nm measured with SQUID in the temperature range 5–300 K shows anomalous behaviour in field cooled (FC) and zero-field-cooled (ZFC) conditions. The FC and ZFC curves measured in 50 Oe field cross each other a little before the peaks. No such anomaly is observed with samples of 6 nm particle size made with the same procedure. The characteristics of the FC and ZFC curves are very different in ZnFe2O4 samples of the same size (6 nm) made via two different chemical routes. The genesis of these differences are suggested to be in cationic configuration and spin disorder. Fe-extended X-ray absorption fine structure (EXAFS) studies show that there is around 80% inversion in case of zinc ferrite (ZnFe2O4) with the particle size 4 nm, whereas ZnFe2O4 of size 6 nm shows 40% inversion. The samples with an average particle size of 7 nm and more show negligible inversion. Theoretical simulations suggest that the electrostatic energy of the system plays a crucial role in deciding the cationic configuration of spinel ferrites. 相似文献
5.
Nanocrystalline CuFe2O4 and CuFe2O4/xSnO2 nanocomposites (x=0, 1, 5 wt%) have been successfully synthesized by one-pot reaction of urea-nitrate combustion method. The transmission electron microscope study reveals that the particle size of the as synthesized CuFe2O4 and CuFe2O4/5 wt%SnO2 are 10 and 20 nm, respectively. The SnO2 coating on the nanocrystalline CuFe2O4 was confirmed from HRTEM studies. The resultant products were sintered at 1100 °C and characterized by XRD and SQUID for compound formation and magnetic studies, respectively. The X-ray diffraction pattern shows the well-defined sharp peak that confirms the phase pure compound formation of tetragonal CuFe2O4. The zero field cooled (ZFC) and field cooled (FC) magnetization was performed using SQUID magnetometer from 2 to 350 K and the magnetic hysteresis measurement was carried out to study the magnetic properties of nanocomposites. 相似文献
6.
This paper reports on the influence of the sintering temperature and atmosphere and transition-metal doping on the magnetic properties of nanocrystalline and bulk In2O3. Undoped nanocrystalline In2O3 is diamagnetic whatever the sintering temperature and atmosphere. All single-phase transition-metal-doped In2O3 samples are paramagnetic, with a paramagnetic effective moment originating from weakly interacting transition metal ions. No trace of ferromagnetism has been detected even with samples sintered under argon, except extrinsic ferromagnetism for samples with magnetic dopant concentrations exceeding the solubility limit. 相似文献
7.
A.L. Ortiz A. Díaz-Parralejo O. Borrero-López F. Guiberteau 《Applied Surface Science》2006,252(17):6018-6021
We investigated the effect of ion nitriding on the crystal structure of 3 mol% Y2O3-doped ZrO2 (3YSZ) thin-films prepared by the sol-gel method. For this purpose, we used X-ray diffractometry to determine the crystalline phases, the lattice parameters, the crystal sizes, and the lattice microstrains, and glow discharge-optical emission spectroscopy to obtain the depth profiles of the elemental chemical composition. We found that nitrogen atoms substitute oxygen atoms in the 3YSZ crystal, thus leading to the formation of unsaturated-substitutional solid solutions with reduced lattice parameters and Zr0.94Y0.06O1.72N0.17 stoichiometric formula. We also found that ion nitriding does not affect the grain size, but does generate lattice microstrains due to the increase in point defects in the crystalline lattice. 相似文献
8.
L.F. Liu J.F. Kang Y. Wang H. Tang L.G. Kong X. Zhang R.Q. Han 《Solid State Communications》2006,139(6):263-267
CoxTi1−xO2−δ films have been prepared on Si(001) substrates by sol-gel method. When heat treated in air, CoxTi1−xO2−δ films are non-ferromagnetic at room temperature. However, after further vacuum annealing or hydrogenation, CoxTi1−xO2−δ films show room-temperature ferromagnetism (RTFM). When the vacuum annealed CoxTi1−xO2−δ films are reheated in air, the magnetic moments of the films strongly reduce. After these films are vacuum annealed once again, the magnetic moments are greatly enhanced, confirming the role of vacuum annealing in ferromagnetism of CoxTi1−xO2−δ films. The x-ray diffraction (XRD), x-ray photoelectron spectroscopy (XPS) and measurements of magnetization (M) vs temperature (T) fail to detect Co clusters in the vacuum annealed and the hydrogenated CoxTi1−xO2−δ films. Oxygen vacancies are formed in CoxTi1−xO2−δ films after vacuum annealing and hydrogenation, determined by XRD and XPS measurements. These results indicate that oxygen vacancies created by vacuum annealing and hydrogenation play an important role in the generation of RTFM in CoxTi1−xO2−δ films. 相似文献
9.
We have studied the magnetic properties of Zn0.96M0.04O (M=Mn, Fe, Co) compounds prepared using several routes. The low temperature ceramic synthesis gave multiphasic samples and show ferromagnetic behavior. Single phases can be obtained by heating at higher temperatures (∼900–1100 °C). The use of very low oxygen pressure also favours the preparation of single-phases. We were also successful in preparing single-phase samples at very low temperature (∼400 °C) by using a sol-gel method. All of the samples without noticeable secondary phases in the X-ray patterns behave as conventional paramagnets. This is true even for the samples with very low grain size. Samples exhibiting secondary phases reveal spontaneous magnetization even at room temperature in some cases. Our results strongly support that ferromagnetism at room temperature is always due to the presence of secondary phases and not to the doping of ZnO. 相似文献
10.
We present a systematic study of the structure, magnetization, resistivity, and Hall effect properties of pulsed laser deposited Fe- and Cu-codoped In2O3 and indium-tin-oxide (ITO) thin films. Both the films show a clear ferromagnetism and anomalous Hall effect at 300 K. The saturated magnetic moments are almost the same for the two samples, but their remanent moments Mr and coercive fields HC are quite different. Mr and HC values of ITO film are much smaller than that of In2O3. The ITO sample shows a typical semiconducting behavior in whole studied temperature range, while the In2O3 thin film is metallic in the temperature range between 147 and 285 K. Analysis of different conduction mechanisms suggest that charge carriers are not localized in the present films. The profile of the anomalous Hall effect vs. magnetic field was found to be identical to the magnetic hysteresis loops, indicating the possible intrinsic nature of ferromagnetism in the present samples. 相似文献
11.
S.B. Han X.F. Liu J.Y. Lv J. Peng Y.M. Hao X.J. Li D.F. Chen Y.J. Xue J.H. Li Z.B. Hu 《Journal of magnetism and magnetic materials》2006
A systematic study of the formation, structure and magnetic properties of (Nd,Dy)3Fe27.5(Ti,Mo)1.5 compounds has been performed. Rietveld analyses of the X-ray patterns of the samples indicate that the concentrations of Ti and Mo affect the formation and structural properties slightly, whereas different rare-earth (Nd and Dy) contents influence them significantly. It is found that high Dy contents make it difficult to form the 3:29-type structures. The Curie temperatures of Nd2.1Dy0.9Fe27.5Ti1.5−xMox decrease monotonically as more Ti was replaced by Mo but their saturation magnetizations remain almost unchanged; in contrast, for Nd3−yDyyFe27.5TiMo0.5, their saturation magnetizations decrease monotonically with increasing Dy contents while their Curie temperatures are constant. 相似文献
12.
In this paper, the Dy0.75Fe1.25O3 orthoferrite nanoparticles were synthesized successfully by sol-gel method. Dy0.75Fe1.25O3 orthoferrite nanoparticles are obtained by calcining the flakes at 600 and 700 °C. The magnetic properties of the different samples are investigated using Quantum Design MPMS SQUID magnetometer and MS-500 Mössbauer spectrometer. Magnetic phase γ-Fe2O3 coexists in the samples calcined at 600 °C and orthoferrite phase is completely recovered in the samples calcined at 700 °C. Although excessive Fe3+ ions were introduced, none of these iron spins couple magnetically with Dy3+ ions. 相似文献
13.
L.F. Liu J.F. KangY. Wang H. TangL.G. Kong L. SunX. Zhang R.Q. Han 《Journal of magnetism and magnetic materials》2007
Co-doped TiO2 (CoxTi1−xO2, 0.05?x?0.2) films have been prepared on Si (0 0 1) substrates by sol–gel method. When heat treated in air, CoxTi1−xO2 films are non-ferromagnetic at room temperature. However, after further annealed in a flowing hydrogen atmosphere, CoxTi1−xO2 films show room-temperature ferromagnetism (RTFM). Measurements of magnetization (M) vs. temperature (T), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) fail to detect Co clusters in the hydrogenated Co0.1Ti0.9O2 films, suggesting that RTFM in the hydrogenated Co0.1Ti0.9O2 films may be intrinsic. But, metal Co appears in the hydrogenated Co0.2Ti0.8O2 films, showing that RTFM in the hydrogenated Co0.2Ti0.8O2 films is as least partly due to metal Co. These results indicate that hydrogen annealing can produce room-temperature ferromagnetism in CoxTi1−xO2 films, but it should be carefully designed to avoid the formation of metal Co in the hydrogenated CoxTi1−xO2 films. 相似文献
14.
In this study, a simple method to prepare a novel magnetic carrier based on carbon matrix has been built by heating the aqueous solution of glucose and oleic acid-stabilized Fe3O4 nanoparticle at 170 °C for 3 h. The results show that the surface hydrophobic modification of Fe3O4 nanoparticle is necessary for the successful synthesis of Fe3O4/C nanocomposition, and a possible formation mechanism of Fe3O4/C nanocomposition was presented. The influence of the reaction parameters such as the concentration of oleic acid-stabilized Fe3O4 nanoparticle, the reaction time, etc. on the product was also investigated. In the typical reaction (2.5 g/L of oleic acid-stabilized Fe3O4 nanoparticle, 0.5 M of glucose), Fe3O4/C nanocompositions with the average diameter in the range 100–200 nm were obtained and its saturation is 12.4 emu/g. In order to characterize Fe3O4/C nanocompositions, XPS, XRD, FT–IR, and Mössbauer spectra were employed. 相似文献
15.
I.H. Gul A.Z. AbbasiF. Amin M. Anis-ur-RehmanA. Maqsood 《Journal of magnetism and magnetic materials》2007
Nanoparticles of Co1−xZnxFe2O4 with stoichiometric proportion (x) varying from 0.0 to 0.6 were prepared by the chemical co-precipitation method. The samples were sintered at 600 °C for 2 h and were characterized by X-ray diffraction (XRD), low field AC magnetic susceptibility, DC electrical resistivity and dielectric constant measurements. From the analysis of XRD patterns, the nanocrystalline ferrite had been obtained at pH=12.5–13 and reaction time of 45 min. The particle size was calculated from the most intense peak (3 1 1) using the Scherrer formula. The size of precipitated particles lies within the range 12–16 nm, obtained at reaction temperature of 70 °C. The Curie temperature was obtained from AC magnetic susceptibility measurements in the range 77–850 K. It is observed that Curie temperature decreases with the increase of Zn concentration. DC electrical resistivity measurements were carried out by two-probe method from 370 to 580 K. Temperature-dependent DC electrical resistivity decreases with increase in temperature ensuring the semiconductor nature of the samples. DC electrical resistivity results are discussed in terms of polaron hopping model. Activation energy calculated from the DC electrical resistivity versus temperature for all the samples ranges from 0.658 to 0.849 eV. The drift mobility increases by increasing temperature due to decrease in DC electrical resisitivity. The dielectric constants are studied as a function of frequency in the range 100 Hz–1 MHz at room temperature. The dielectric constant decreases with increasing frequency for all the samples and follow the Maxwell–Wagner's interfacial polarization. 相似文献
16.
Rajendra Kumar Singh 《Applied Surface Science》2009,255(15):6827-6831
Glasses with compositions 41CaO(52 − x)SiO24P2O5·xFe2O33Na2O (2 ≤ x ≤ 10 mol.%) were prepared by melt quenching method. Bioactivity of the different glass compositions was studied in vitro by treating them with simulated body fluid (SBF). The glasses treated for various time periods in SBF were evaluated by examining apatite formation on their surface using grazing incidence X-ray diffraction, Fourier transform infrared reflection spectroscopy, scanning electron microscopy and energy dispersive spectroscopy techniques. Increase in bioactivity with increasing iron oxide content was observed. The results have been used to understand the evolution of the apatite surface layer as a function of immersion time in SBF and glass composition. 相似文献
17.
Ah Reum Han Seong-Ju Hwang Yongnan Zhao Young-Uk Kwon 《Journal of magnetism and magnetic materials》2008
The local atomic arrangement and electronic structure of the Co-doped Zn1−xCoxO nanocrystal have been quantitatively examined along with its magnetic properties. According to our analysis using powder X-ray diffraction, electron microscopy, and Zn K-edge X-ray absorption spectroscopy (XAS), phase-pure wurzite-structured Zn1−xCoxO nanocrystals have been successfully synthesized via the molten-salt method. The Co K-edge XAS analysis clearly demonstrates that all the Co2+ ions are substituted for the tetrahedral Zn sites of the Wurzite structure with a coordination number of 3.9 and a bond distance of 1.97 Å, ruling out the presence of magnetic impurity phase and Co-metal cluster. Magnetization measurements reveal that the present Zn1−xCoxO sample does not show any ferromagnetic transition down to 2 K. In this regard, we can conclude that Co-doped zinc oxide is not ferromagnetic but the previously reported ferromagnetism in this phase would be an extrinsic property. 相似文献
18.
We have synthesized cone-like GeO2 structures via thermal heating of Ge powders. We have investigated the effects of substrate temperature on the sample morphology, revealing that cone-shaped structures are preferentially obtained at higher temperature. The cone-shaped structures, which gradually become thinner to form a sharp tip, appear to be a single-crystalline, hexagonal structure of GeO2. Room-temperature photoluminescence measurement revealed two emission peaks, at about 2.78 and 3.04 eV. 相似文献
19.
Jeongyong Choi Hee-Woong Lee Bong-Seo Kim Hyoyeol Park Sungyoul Choi S.C. Hong Sunglae Cho 《Journal of magnetism and magnetic materials》2006
We report on the single crystal growth and thermoelectric and magnetic properties of Mn-doped Bi2Se3 and Sb2Se3 single crystals prepared by the temperature gradient solidification method. The composition and crystal structure were determined using electron probe microanalysis and θ–2θ powder X-ray diffraction studies, respectively. The lattice constants of several percent Mn-doped Bi2Se3 and Sb2Se3 were slightly smaller than those of the undoped sample due to the smaller Mn atomic radius (1.40 Å) than those of Bi (1.60 Å) and Sb (1.45 Å). Mn-doped Bi2Se3 and Sb2Se3 showed spin-glass and paramagnetic properties, respectively. 相似文献
20.
Bismuth-borate glasses doped with some rare earth ions were studied with respect to the density, molar volume and the elastic moduli, Poisson’s ratio, Debye temperature, microhardness, softening temperature, acoustic impedance, diffusion constant and latent heat of melting. Ultrasonic velocities were measured by the pulse echo overlap technique at a frequency of 10 MHz and at room temperature. From these velocities and density values, various elastic moduli were calculated. The correlation of elastic stiffness, the cross link density, and the fractal bond connectivity of these glasses are discussed. The derived experimental values of shear modulus, bulk modulus, Young’s modulus, and Poisson’s ratio for our glasses are compared with the theoretically calculated values in terms of the bond compression model and Makishima-Mackenize theory. 相似文献