首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 172 毫秒
1.
Well ordered V2O3(0 0 0 1) films were prepared on Au(1 1 1) and W(1 1 0) substrates. These films are terminated by a layer of vanadyl groups under typical UHV conditions. Reduction by electron bombardment may remove the oxygen atoms of the vanadyl layer, leading to a surface terminated by vanadium atoms. The interaction of oxygen with the reduced V2O3(0 0 0 1) surface has been studied in the temperature range from 80 to 610 K. Thermal desorption spectroscopy (TDS), infrared reflection absorption spectroscopy (IRAS), high resolution electron energy loss spectroscopy (HREELS), X-ray photoelectron spectroscopy (XPS), and density functional theory (DFT) were used to study the adsorbed oxygen species. Low temperature adsorption of oxygen on reduced V2O3(0 0 0 1) occurs both dissociatively and molecularly. At 90 K a negatively charged molecular oxygen species is observed. Upon annealing the adsorbed oxygen species dissociates, re-oxidizing the reduced surface by the formation of vanadyl species. Density functional theory was employed to calculate the structure and the vibrational frequencies of the O2 species on the surface. Using both cluster and periodic models, the surface species could be identified as η2-peroxo () lying flat on surface, bonded to the surface vanadium atoms. Although the O-O vibrational normal mode involves motions almost parallel to the surface, it can be detected by infrared spectroscopy because it is connected with a change of the dipole moment perpendicular to the surface.  相似文献   

2.
S. Funk 《Applied Surface Science》2007,253(17):7108-7114
We attempt to correlate qualitatively the surface structure with the chemical activity for a metal surface, Cr(1 1 0), and one of its surface oxides, Cr2O3(0 0 0 1)/Cr(1 1 0). The kinetics and dynamics of CO2 adsorption have been studied by low energy electron diffraction (LEED), Aug er electron spectroscopy (AES), and thermal desorption spectroscopy (TDS), as well as adsorption probability measurements conducted for impact energies of Ei = 0.1-1.1 eV and adsorption temperatures of Ts = 92-135 K. The Cr(1 1 0) surface is characterized by a square shaped LEED pattern, contamination free Cr AES, and a single dominant TDS peak (binding energy Ed = 33.3 kJ/mol, first order pre-exponential 1 × 1013 s−1). The oxide exhibits a hexagonal shaped LEED pattern, Cr AES with an additional O-line, and two TDS peaks (Ed = 39.5 and 30.5 kJ/mol). The initial adsorption probability, S0, is independent of Ts for both systems and decreases exponentially from 0.69 to 0.22 for Cr(1 1 0) with increasing Ei, with S0 smaller by ∼0.15 for the surface oxide. The coverage dependence of the adsorption probability, S(Θ), at low Ei is approx. independent of coverage (Kisliuk-shape) and increases initially at large Ei with coverage (adsorbate-assisted adsorption). CO2 physisorbs on both systems and the adsorption is non-activated and precursor mediated. Monte Carlo simulations (MCS) have been used to parameterize the beam scattering data. The coverage dependence of Ed has been obtained by means of a Redhead analysis of the TDS curves.  相似文献   

3.
The effect of the irradiation with Al Kα X-rays during an XPS measurement upon the surface vanadium oxidation state of a fresh in vacuum cleaved V2O5(0 0 1) crystal was examined. Afterwards, the surface reduction of the V2O5(0 0 1) surface under Ar+ bombardment was studied. The degree of reduction of the vanadium oxide was determined by means of a combined analysis of the O1s and V2p photoelectron lines. Asymmetric line shapes were needed to fit the V3+2p photolines, due to the metallic character of V2O3 at ambient temperature. Under Ar+ bombardment, the V2O5(0 0 1) crystal surface reduces rather fast towards the V2O3 stoichiometry, after which a much slower reduction of the vanadium oxide occurs.  相似文献   

4.
K. Ozawa  Y. Oba 《Surface science》2009,603(13):2163-1659
Low-energy electron diffraction, X-ray photoelectron spectroscopy and synchrotron-radiation-excited angle-resolved photoelectron spectroscopy have been used to characterize Cu-oxide overlayers on the Zn-terminated ZnO(0 0 0 1) surface. Deposition of Cu on the ZnO(0 0 0 1)-Zn surface results in the formation of Cu clusters with (1 1 1) top terraces. Oxidation of these clusters by annealing at 650 K in O2 atmosphere (1.3 × 10−4 Pa) leads to an ordered Cu2O overlayer with (1 1 1) orientation. Good crystallinity of the Cu2O(1 1 1) overlayer is proved by energy dispersion of one of Cu2O valence bands. The Cu2O(1 1 1) film exhibits a strong p-type semiconducting nature with the valence band maximum (VBM) of 0.1 eV below the Fermi level. The VBM of ZnO at the Cu2O(1 1 1)/ZnO(0 0 0 1)-Zn interface is estimated to be 2.4 eV, yielding the valence-band offset of 2.3 eV.  相似文献   

5.
M.S. Zei 《Surface science》2006,600(9):1942-1951
The growth and structures of aluminum oxides on NiAl(1 0 0) have been investigated by RHEED (reflection high energy electron diffraction), complemented by LEED (low energy electron diffraction), AES (Auger electron spectroscopy) and STM (scanning tunneling microscopy). Crystalline θ-Al2O3 phase grows through gas-phase oxidation on the NiAl(1 0 0) substrate with its a and b-axes parallel to [0 −1 0] and [0 0 1] direction of the substrate, respectively, forming a (2 × 1) unit cell. Whilst, three-dimensional nano-sized NiAl(1 0 0) protrusions and Al2O3, NiAl(0 1 1) clusters were found to co-exit at the surface, evidenced by extraordinary transmission spots superposed to the substrate reflection rods in the RHEED patterns. Particularly, the NiAl(0 1 1) clusters develop with their (0 1 1) plane parallel to the NiAl(1 0 0) surface, and [1 0 0] axis parallel to the [0 −1 1] direction of the substrate surface. STM observation combined with information from AES and TPD (temperature programmed desorption) suggest the formation of these 3D structures is closely associated with partial decomposition of the crystalline oxides during annealing. On the other hand, smoother (2 × 1) oxide islands with thickness close to a complete monolayer of θ-Al2O3 can be formed on NiAl(1 0 0) by electro-oxidation, in contrast with the large crystalline films formed by gas-oxidation.  相似文献   

6.
Zhipeng Chang 《Surface science》2007,601(9):2005-2011
Methanethiol adsorbed on Ru(0 0 0 1)-p(2 × 2)O has been studied by TPD and XPS. The dissociation of methanethiol to methylthiolate and hydrogen at 90 K is evidenced by the observation of hydroxyl and water. The saturation coverage of methylthiolate is ∼0.15 ML, measured by both XPS and TPD. A detailed analysis suggests that only the hcp-hollow sites have been occupied. Upon annealing the surface, water and hydroxyl desorb from the surface at ∼210 K. Methylthiolate decomposes to methyl radical and atomic sulphur via C-S cleavage between 350 and 450 K. Some methyl radicals (0.05 ML) have been transferred to Ru atoms before they decompose to carbon and hydrogen. The rest of methyl radicals desorb as gaseous phase. No evidence for the transfer of methyl radical to surface oxygen has been found.  相似文献   

7.
The surface reaction and desorption of sulfur on Rh(1 0 0) induced by O2 and H2O are investigated with X-ray photoelectron spectroscopy (XPS) technique. The Rh(1 0 0) sample covered with atomic sulfur is prepared by means of the exposure to H2S gas, and subsequently the sample is annealed under O2 or H2O atmosphere. The XPS results show that atomic sulfur adsorbed on Rh(1 0 0) reacts with O2 and desorbs from the surface at 473 K or more. On the other hand, atomic sulfur can not be removed from Rh(1 0 0) surface by H2O at any temperature.  相似文献   

8.
The adsorption properties of CO on the epitaxial five-monolayer Co/Cu(1 0 0) system, where the Co overlayer has stabilized in the metastable fcc-phase, are reported. This system is known to exhibit metallic quantum well (MQW) states at energies 1 eV or greater above the Fermi level, which may influence CO adsorption. The CO/fcc-Co/Cu(1 0 0) system was explored with low energy electron diffraction (LEED), inverse photoemission (IPE), reflection-absorption infrared spectroscopy (RAIRS) and temperature programmed desorption (TPD). Upon CO adsorption, a new feature is observed in IPE at 4.4 eV above EF and is interpreted as the CO 2π level. When adsorbed at room temperature, TPD exhibits a CO desorption peak at ∼355 K, while low temperature adsorption reveals additional binding configurations with TPD features at ∼220 K and ∼265 K. These TPD peak temperatures are correlated with different C-O stretch vibrational frequencies observed in the IR spectra. The adsorption properties of this surface are compared to those of the surfaces of single crystal hcp-Co, as well as other metastable thin film systems.  相似文献   

9.
Adsorption probability measurements (molecular beam scattering) have been conducted to examine the adsorption dynamics (i.e. the gas-surface energy transfer processes) of CO2 adsorption on the Zn-on-Cu(1 1 0) bimetallic system. The results indicate surface alloy formation, which is in agreement with prior studies. Depositing Zn at 300 K on Cu(1 1 0), above the condensation temperature of CO2, leads to a “blocking” of CO2 adsorption sites by Zn which is incorporated in the Cu(1 1 0) surface. This apparent site blocking effect indicates a lowering of the CO2 binding energy on the alloyed surface as compared with the clean Cu(1 1 0) support. The Zn coverage has been calibrated by Auger electron spectroscopy and thermal desorption spectroscopy.  相似文献   

10.
A.P. Farkas 《Surface science》2007,601(1):193-200
The adsorption, desorption and dissociation of ethanol have been investigated by work function, thermal desorption (TPD) and high resolution electron energy loss (HREELS) spectroscopic measurements on Mo2C/Mo(1 0 0). Adsorption of ethanol on this sample at 100 K led to a work function decrease suggesting that the adsorbed layer has a positive outward dipole moment By means of TPD we distinguished three adsorption states, condensed layer with a Tp = 162 K, chemisorbed ethanol with Tp = 346 K and irreversibly bonded species which decomposes to different compounds. These are hydrogen, acetaldehyde, methane, ethylene and CO. From the comparison of the Tp values with those obtained following their adsorption on Mo2C it was inferred that the desorption of methane and ethylene is reaction limited, while that of hydrogen is desorption limited process. HREEL spectra obtained at 100 K indicated that at lower exposure ethanol undergoes dissociation to give ethoxy species, whereas at high exposure molecularly adsorbed ethanol also exists on the surface. Analysis of the spectral changes in HREELS observed for annealed surface assisted to ascertain the reaction pathways of the decomposition of adsorbed ethanol.  相似文献   

11.
Feng Gao 《Surface science》2007,601(15):3276-3288
The adsorption of alanine is studied on a Pd(1 1 1) surface using X-ray photoelectron spectroscopy (XPS) and temperature-programmed desorption (TPD). It is found that alanine adsorbs into the second and subsequent layers prior to completion of the first monolayer for adsorption at ∼250 K, while at ∼300 K, alanine adsorbs almost exclusively into the first monolayer with almost no second-layer adsorption. Alanine adsorbs onto the Pd(1 1 1) surface in its zwitterionic form, while the multilayer contains about 30-35% neutral alanine, depending on coverage. Alanine is thermally stable on the Pd(1 1 1) surface to slightly above room temperature, and decomposes almost exclusively by scission of the CCOO bond to desorb CO2 and CO from the COO moiety, and the remaining fragment yields ethylamine and HCN.  相似文献   

12.
Zhenjun Li 《Surface science》2007,601(8):1898-1908
The formation of alloys by adsorbing gold on a Pd(1 1 1) single crystal substrate and subsequently annealing to various temperatures is studied in an ultrahigh vacuum by means of Auger and X-ray photoelectron spectroscopy. The nature of the alloy surface is probed by CO chemisorption using temperature-programmed desorption and reflection-absorption infrared spectroscopy. It is found that gold grows in a layer-by-layer fashion on Pd(1 1 1) at 300 K, and starts to diffuse into the bulk after annealing to above ∼600 K. Alloy formation results in a ∼0.5 eV binding energy decrease of the Au 4f XPS signals and a binding energy increase of the Pd 3d features of ∼0.8 eV, consistent with results obtained for the bulk alloy. The experimentally measured CO desorption activation energies and vibrational frequencies do not correlate well with the surface sites expected from the bulk alloy composition but are more consistent with significant preferential segregation of gold to the alloy surface.  相似文献   

13.
The adsorption and desorption of sulphur on the clean reconstructed Au(1 1 0)-(1 × 2) surface has been studied by low energy electron diffraction, Auger electron spectroscopy and temperature programmed desorption. The results obtained show a complex behaviour of the S/Au(1 1 0) system during sulphur desorption at different temperatures. Two structures of the stable ordered sulphur overlayer on the Au(1 1 0) surface, p(4 × 2) and c(4 × 4), were found after annealing the S/Au(1 1 0) system at 630 K and 463 K, respectively. The corresponding sulphur coverage for these overlayers was estimated by AES signal intensity analysis of the Au NOO and S LMM Auger lines to be equal to 0.13 ML and 0.2 ML, respectively. Both sulphur structures appear after removing an excess of sulphur, which mainly desorbs at 358 K as determined from TPD spectra. Furthermore, it was not possible to produce the lower coverage p(4 × 2) sulphur structure by annealing the c(4 × 4) surface. In the case of the p(4 × 2) S overlayer on the Au(1 1 0)-(1 × 2) surface it is proposed that the sulphur is attached to “missing row” sites only. The c(4 × 4) S overlayer arises via desorption of S2 molecules that are formed on the surface due to mobility of sulphur atoms after a prolonged anneal.  相似文献   

14.
Feng Gao 《Surface science》2009,603(8):1126-10202
RuO2(1 1 0) was formed on Ru(0 0 0 1) under oxygen-rich reaction conditions at 550 K and high pressures. This phase was also synthesized using pure O2 and high reaction temperatures. Subsequently the RuO2 was subjected to CO oxidation reaction at stoichiometric and net reducing conditions at near-atmospheric pressures. Both in situ polarization modulation infrared reflection absorption spectroscopy (PM-IRAS) and post-reaction Auger electron spectroscopy (AES) measurements indicate that RuO2 gradually converts to a surface oxide and then to a chemisorbed oxygen phase. Reaction kinetics shows that the chemisorbed oxygen phase has the highest reactivity due to a smaller CO binding energy to this surface. These results also show that a chemisorbed oxygen phase is the thermodynamically stable phase under stoichiometric and reducing reaction conditions. Under net oxidizing conditions, RuO2 displays high reactivity at relatively low temperatures (?450 K). We propose that this high reactivity involves a very reactive surface oxygen species, possibly a weakly bound, atomic oxygen or an active molecular O2 species. RuO2 deactivates gradually under oxidizing reaction conditions. Post-reaction AES measurements reveal that this deactivation is caused by a surface carbonaceous species, most likely carbonate, that dissociates above 500 K.  相似文献   

15.
We have studied the adsorption structure of acetic anhydride on a TiO2(1 1 0) surface using XPS (X-ray photoelectron spectroscopy), LEED (low energy electron diffraction) and HREELS (high resolution electron energy loss spectroscopy) to determine the origins of the unique adsorption properties of carboxylic acids on a TiO2(1 1 0) surface. The C 1s XPS data indicated that the saturation carbon amount of adsorbed acetic anhydride was 12 ± 3% larger than that of the adsorbed acetic acid. LEED showed p(2 × 1) weak spots for the acetic anhydride adsorbed surface. The HREELS spectra revealed the dissociative adsorption of acetic anhydride. Based on these findings, we concluded that the neutralization of the bridging oxygen atoms associated with the dissociative adsorption is necessary for the stable adsorption of carboxylates on the 5-fold Ti sites.  相似文献   

16.
Temperature-programmed reaction/desorption, X-ray photoelectron spectroscopy, and reflection-absorption infrared spectroscopy have been employed to investigate the reactions of ICH2CH2OH on Cu(1 0 0) under ultrahigh-vacuum conditions. ICH2CH2OH can dissociate on Cu(1 0 0) at 100 K, forming a -CH2CH2OH surface intermediate. Density functional theory calculations predict that the -CH2CH2OH is most probably adsorbed on atop site. -CH2CH2OH on Cu(1 0 0) further decomposes to yield C2H4 below 270 K. No evidence shows the formation of -CH2CH2O- intermediate in the reactions of ICH2CH2OH on Cu(1 0 0) in contrast to the decomposition of BrCH2CH2OH on Cu(1 0 0) and ICH2CH2OH on Ag(1 1 1) and Ag(1 1 0), exhibiting the effects of carbon-halogen bonds and metal surfaces.  相似文献   

17.
The surface chemistry and binding of dl-proline were investigated on the oxidised (stoichiometric) and reduced (sub-stoichiometric) TiO2(1 1 0) single crystal surfaces. TiO2 was chosen as the substrate as it best represents the surface of a biomedical implant, which bio-molecules interact with during the healing of bone/teeth fractures (molecular recognition). High resolution X-ray photoelectron spectroscopy (HR-XPS) studies of the C1s and N1s regions revealed that dl-proline is present in two forms (dissociated and zwitterionic) on the oxidised TiO2 surface. On TiO2(1 1 0) surfaces reduced by Ar+ sputtering, a significant increase in the amount of zwitterionic proline at the surface was detected when compared with the oxidised surface. Study of the temperature effect showed that in both cases the zwitterionic structure was the less stable structure. The reason for its relative instability appears to be thermodynamic.  相似文献   

18.
The interaction between a semi-large aromatic hydrocarbon compound (perylene) and the TiO2(1 1 0)-(1 × 1) surface under ultra high vacuum conditions has been probed by X-ray photoemission spectroscopy (XPS), ultraviolet photoemission spectroscopy (UPS) and near-edge X-ray absorption fine structure (NEXAFS) methods. UPS measurements of the adsorbate system have been compared with an experimental UPS spectrum of perylene in the gas phase and a calculated spectrum obtained by means of density functional theory (DFT) methods. NEXAFS results of perylene molecules adsorbed on TiO2(1 1 0)-(1 × 1) were compared with data from an α-phase perylene single crystal. A novel analysis of the valence data has been employed to show that no strong chemical interaction takes place between perylene and the TiO2(1 1 0)-(1 × 1) surface. Furthermore, angle-dependent NEXAFS measurements and the growth curve results suggest that the perylene molecules are oriented flat down onto the TiO2 substrate due to weak van der Waals interactions.  相似文献   

19.
The adsorption and reactivity of SO2 on the Ir(1 1 1) and Rh(1 1 1) surfaces were studied by surface science techniques. X-ray photoelectron spectroscopy measurements showed that SO2 was molecularly adsorbed on both the Ir(1 1 1) surface and the Rh(1 1 1) surface at 200 K. Adsorbed SO2 on the Ir(1 1 1) surface disproportionated to atomic sulfur and SO3 at 300 K, whereas adsorbed SO2 on the Rh(1 1 1) surface dissociated to atomic sulfur and oxygen above 250 K. Only atomic sulfur was present on both surfaces above 500 K, but the formation process and structure of the adsorbed atomic sulfur on Ir(1 1 1) were different from those on Rh(1 1 1). On Ir(1 1 1), atomic sulfur reacted with surface oxygen and was completely removed from the surface, whereas on Rh(1 1 1), sulfur did not react with oxygen.  相似文献   

20.
S.D. Sartale 《Surface science》2006,600(22):4978-4985
The growth of Pt nanoclusters on thin film Al2O3 grown on NiAl(1 0 0) was studied by using scanning tunneling microscopy (STM). The samples were prepared by vapor depositing various amounts of Pt onto the Al2O3/NiAl(1 0 0) at different substrate temperatures in ultra high vacuum (UHV). The STM images show that sizeable Pt nanoclusters grow solely on crystalline Al2O3 surface. These Pt clusters appear to be randomly distributed and only a few form evident alignment patterns, contrasting with Co clusters that are highly aligned on the crystalline Al2O3. The size distributions of these Pt clusters are rather broader than those of the Co clusters on the same surface and the sizes are evidently smaller. With increasing coverage or deposition temperature, the number of larger clusters is enhanced, while the size of the majority number of the clusters remains around the same (0.4 nm as height and 2.25 nm as diameter), which differs drastically from the Pt clusters on γ-Al2O3/NiAl(1 1 0) observed earlier. These Pt cluster growth features are mostly attributed to smaller diffusion length and ease to form stable nucleus, arising from strong Pt-Pt and Pt-oxide interactions and the peculiar protrusion structures on the ordered Al2O3/NiAl(1 0 0). The thermal stability of Pt nanoclusters was also examined. The cluster density decreased monotonically with annealing temperature up to 1000 K at the expense of smaller clusters but coalescence is not observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号