首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of transition element (TE=Cr, Fe, Co, Ni, Cu, Zn) doping on the electronic transport and magnetic properties in the bilayer manganite La1.4Sr1.6Mn2O7 is studied for the same dopant concentration fixed at 2%. Doping does not cause change in structure but different behavior in magnetic and transport properties. Except for Cr, all the other dopings significantly shift the magnetic transition temperature (TC) to a lower temperature. Associated with such a decrease, the insulator-metal transition temperature (TIM) decreases and the peak resistivity (ρp) at TIM increases. Cr doping enhances TC and TIM as well as decreases ρp. Fe doping apparently has a stronger effect than Co and Ni doping. It is also indicated that Cu doping causes an anomalously large increase in ρp. These behaviors are compared with those observed in other bilayer manganites such as La1.2Sr1.8Mn2O7 as well as in La0.7Ca0.3Mn1−xTExO3.  相似文献   

2.
The magnetic property of double doped manganite Nd0.5(1+x)Ca0.5(1−x)Mn(1−x)CrxO3 with a fixed ratio of Mn3+:Mn4+=1:1 has been investigated. For the undoped sample, it undergoes one transition from charge disordering to charge ordering (CO) associated with paramagnetic (PM)-antiferromagnetic (AFM) phase transition at T<250 K. The long range AFM ordering seems to form at 35 K, rather than previously reported 150 K. At low temperature, an asymmetrical M-H hysteresis loop occurs due to weak AFM coupling. For the doped samples, the substitution of Cr3+ for Mn3+ ions causes the increase of magnetization and the rise of Tc. As the Cr3+ concentration increases, the CO domain gradually becomes smaller and the CO melting process emerges. At low temperature, the FM superexchange interaction between Mn3+ and Cr3+ ions causes a magnetic upturn, namely, the second FM phase transition.  相似文献   

3.
A series of the double-doping samples La(2+x)/3Sr(1−4x)/3Mn1−xCrxO3 (0?x?0.25) with the Mn3+/Mn4+ ratio fixed at 2:1 have been fabricated. The structural, magnetic, transport properties and Raman spectroscopy have been investigated, and no apparent crystal structure change is introduced by Cr doping up to x=0.25. But the Curie temperature TC and metal-insulator transition temperature TMI are strongly affected by Cr substitution. The room temperature Raman spectra start exhibiting some new features following the increasing concentration of Cr substitutions. Moreover, it is worth noting that the frequency of the A1g phonon mode can also be well correlated with the A-site mismatch effect (σ2), which is influenced mainly by the variety of the Sr content.  相似文献   

4.
The effect of Al substitution for Mn site in layered manganese oxides La1.3Sr1.7Mn2−xAlxO7 on the magnetic and electrical properties has been investigated. It is interesting that all the samples undergo a similar and complex transition with lowing temperature; they transform from the two-dimensional short-range ferromagnetic order at T*, then enter the three-dimensional long-range ferromagnetic state at TC, at last they display the canted antiferromagnetic state below TN. T*, TC and TN are all reduced with Al content. Resistivity increases sharply with increasing Al concentration, and the metal-insulator transition disappears when x reaches 10%. Additionally, magnetoresistance (MR) effect is weakened. Al substitution dilutes the magnetic active Mn-O-Mn network and weakens the double exchange interaction, and further suppresses FM ordering and metallic conduction. Owing to the anisotropic interaction in the layered perovskite, the magnetic and electrical properties are more sensitive to Al doping level than those in ABO3-type perovskite.  相似文献   

5.
The effect of Co doping at Mn-site on the structural, magnetic and electrical transport properties in electron-doped manganties La0.9Te0.1Mn1−xCoxO3 (0≤x≤0.25) has been investigated. The room temperature structural transition from rhombohedra to orthorhombic (Pbnm) symmetry is found in these samples with x≥0.20 by the Rietveld refinement of X-ray powder diffraction patterns. All samples undergo the paramagnetic-ferromagnetic (PM-FM) phase transition. The Curie temperature TC of these samples decreases and the transition becomes broader with increasing Co-doping level. The magnetization magnitude of Co-doping samples increases at low temperatures with increasing Co-doping level for x≤0.15 and decreases with increasing Co-doping content further. The metal-insulator (M-I) transitions observed in the sample with x=0 are completely suppressed with Co doping, and the resistivity displays semiconducting behavior within the measured temperature region for these samples with x>0. All results are discussed according to the changes of the structure parameters and magnetic exchange interaction caused by Co-doping. In addition, the different effects between the Co doping and Cu doping in the Mn site for the electron-doped manganites are also discussed.  相似文献   

6.
The temperature dependence of the resistance of composite samples (1−x)La0.67Sr0.33MnO3+xYSZ with different YSZ doping level x was investigated at magnetic fields 0-3 T, where YSZ represents yttria-stabilized zirconia. Results show that the YSZ dopant does not only adjust the metal-insulator transition temperature, but also increases the magnetoresistance effect. With increase of YSZ doping level for the range of x<2%, the metal-insulator transition temperature values TP of the composites decrease, but TP increases with increase of x further for the range of x>2%. Meanwhile, in the YSZ-doped composites, a broad metal-insulator transition temperature region was found at zero and low magnetic field, which results in an obvious enhanced magnetoresistance in the temperature range 10-350 K. Specially, a larger magnetoresistance value was observed at room temperature at 3 T, which is encouraging with regard to the potential application of magnetoresistance materials.  相似文献   

7.
The effects of Cr doping on Mn sites in the electron-doped manganites La0.9Te0.1MnO3 have been studied by preparing the series La0.9Te0.1Mn1−xCrxO3 (0.05≤x≤0.20). Upon Cr doping, both the Curie temperature TC and magnetization M are suppressed. The resistivity measurements indicate that there exists a weak metal-insulator (M-I) transition for the sample with x=0.05, with an increase in the doping level, the M-I transition disappears and the resistivity increases. Thermopower S(T) exhibits a maximum near TC for all samples. By fitting the S(T) and ρ(T) curves, it is found that the temperature dependences of both S(T) and ρ(T) in the high temperature paramagnetic (PM) region follow the small polaron conduction (SPC) mechanism for all samples. The fitting parameters obtained imply changes of both the average-hopping distance of the polarons and the polaron concentration with Cr doping in our studied samples. In the case of the thermal conductivity κ(T), the variation of κ(T) is analyzed based on the combined effects due to the suppression of the local Mn3+O6 Jahn-Teller (JT) lattice distortion because of the substitution of Cr3+ for Mn3+ ions, which results in the increase in κ, and the introduction of the disorder due to Cr-doping, which contributes to the decrease in κ.  相似文献   

8.
The samples with the Mn3+/Mn4+ ratio fixed at 2:1 La(2+x)/3Sr(1−x)/3Mn1−xCrxO3 (0≤x≤0.20) have been prepared. The magnetic, electrical transport, and magnetoresistance properties have been investigated. Remarkable transport and colossal magnetoresistance (CMR) effect, as well as cluster glass (CG) behaviors have been clearly observed in the samples studied. It was found that the Curie temperature Tc and insulator−metal transition temperature Tp1 are strongly affected by Cr substitution. The experiment observations are discussed by taking into account the variety of tolerance factors t; the effects of A-site radius 〈rA〉 and the A-site mismatch effect (σ2).  相似文献   

9.
Single-phase polycrystalline samples of La0.67Ca0.33Mn1−xO3 (x=0.00, 0.02, 0.04, 0.06) have been prepared using the sol-gel method. The structure, magnetocaloric properties and the Curie temperature of the samples with different Mn vacancy concentrations have been investigated. The experimental results show that vacancy doping at the Mn-sites has a significant influence on the magnetic properties of La0.67Ca0.33Mn1−xO3. The Curie temperature decreases monotonically with increasing the Mn-site vacancy concentration x. A remarkable enhancement of the magnetic entropy change has been obtained in the La0.67Ca0.33Mn0.98O3 sample. The entropy change reaches |ΔSM|=3.10 J kg−1 K−1 at its Curie temperature (264 K) under an applied magnetic field H=10 kOe, which is almost the same value as that of pure Gd.  相似文献   

10.
The microstructure and magnetic properties have been investigated systematically for Sn1−xMnxO2 polycrystalline powder samples with x=0.02-0.08 synthesized by a solid-state reaction method. X-ray diffraction revealed that all samples are pure rutile-type tetragonal phase and the cell parameters a and c decrease monotonously with the increase in Mn content, which indicated that Mn ions substitute into the lattice of SnO2. Magnetic measurements revealed that all samples exhibit room temperature ferromagnetism. Furthermore, magnetic investigations demonstrate that magnetic properties strongly depend on doping content, x. The average magnetic moment per Mn atom decreases with increase in the Mn content, because antiferromagnetic super-exchange interaction takes place within the neighbor Mn3+ ions through O2− ions for the samples with higher Mn doping. Our results indicate that the ferromagnetic property is intrinsic to the SnO2 system and is not a result of any secondary magnetic phase or cluster formation.  相似文献   

11.
利用具有多自旋态的Co离子进行Mn位替代,制备了La2/3Ca1/3Mn1-xCoxO3 (0≤x≤0.15) 系列样品并研究了体系的结构和输运特性.结果表明,在替代范围内,样品呈现很好的单相结构,各晶格参数随替代量的增大而减小;Co替代导致体系出现电输运反常,具体表现为在居里温度TC以下电阻-温度曲线的二次金属-绝缘转 关键词: Mn位替代 双峰现象 自旋结构 磁电阻效应  相似文献   

12.
The magnetization and electrical resistivity of Mn3−xFexSnC (0.5≤x≤1.3) were measured to investigate the behavior of the complicated magnetic phase transitions and electronic transport properties from 5 to 300 K. The results obtained demonstrate that Fe doping at the Mn sites of Mn3SnC induces a more complicated magnetic phase transition than that in its parent phase Mn3SnC from a paramagnetic (PM) state to a ferrimagnetic (FI) state consisting of antiferromagnetic (AFM) and ferromagnetic (FM) components, while, with the change of Fe-doped content and magnetic field, there is a competition between the AFM component and FM component in the FI state. Both the Curie temperature (TC) and the saturated magnetization Ms increase with increasing x. The FM component region becomes broader with further increasing Fe-doped content x. The external magnetic field easily creates a saturated FM state (and increased TC) when . Fe doping quenches the negative thermal expansion (NTE) behavior from 200 to 250 K reported in Mn3SnC.  相似文献   

13.
The effect of Te-doping at La-site on structural, magnetic and transport properties in the manganites La0.7Ca0.3−xTexMnO3 (0≤x≤0.15) has been investigated. All samples show an orthorhombic structure (O′-Pbnm) at room temperature. It shows that the Mn-O-Mn bond angle decreases and the Mn-O bond length increases with the increase in the Te content. All samples exhibit an insulator-metal (I-M) transition and the resistivity increases with the increase in the Te-doping level. Additionally, the Curie temperature Tc decreases and the transition becomes broader with increasing Te-doping level, in contrast, the magnetization of Te-doping samples at low temperatures decrease with increasing x as x≤0.10 and then increase with further increasing x to 0.15. The results are discussed in terms of Jahn-Teller (JT) vibrational anisotropy Q3/Q2 and the opening of the new DE channel between Mn2+-O-Mn3+ due to the introduction of Mn2+ ions because of the substitution of Te4+ ions for Ca2+ ions.  相似文献   

14.
We synthesized the Mn-doped Mg(In2−xMnx)O4 oxides with 0.03?x?0.55 using a solid-state reaction method. The X-ray diffraction patterns of the samples were in a good agreement with that of a distorted orthorhombic spinel phase. Their lattice parameters and unit-cell volumes decrease with x due to the substitution of the smaller Mn3+ ions to the larger In3+ ions. The undoped MgIn2O4 oxide presents diamagnetic signals for 5 K?T?300 K. The M(H) at T=300 K reveals a fairly negative-sloped linear relationship. Neither magnetic hysteresis nor saturation behavior was observed in this parent sample. For the Mn-doped samples, however, positive magnetization were observed between 5 and 300 K even if the x value is as low as 0.03. The mass susceptibility enhances with Mn content and it reaches the highest value of 1.4×10−3 emu/g Oe (at T=300 K) at x=0.45. Furthermore, the Mn-doped oxides with x=0.06 and 0.2, respectively, exhibit nonlinear magnetization curves and small hysteretic loops in low magnetic fields. Susceptibilities of the Mn-doped samples are much higher than those of MnO2, Mn2O3 oxides, and Mn metals. These results show that the oxides have potential to be magnetic semiconductors.  相似文献   

15.
La0.8Sr0.2Co1−xFexO3 (x=0.15, 0.2, 0.3) samples were studied by means of AC magnetic susceptibility, magnetization, magnetoresistance and 57Fe Mössbauer spectrometry. Iron was found to take on a high spin 3d5−α electronic state in each of the samples, where α refers to a partly delocalized 3d electron. The compounds were found to exhibit a spin-cluster glass transition with a common transition temperature of ∼53 K. The spin-cluster glass transition is visualized in the 57Fe Mössbauer spectra as the slowing down of magnetic relaxation below ∼70 K, thereby showing that iron takes part in the formation of the glassy magnetic phase. The paramagnetic-like phase found at higher temperatures is identified below Tc≈195 K as being composed of weakly interacting, magnetically ordered nanosized clusters of magnetic ions in part with a magnetic moment oriented opposite to the net magnetic moment of the cluster. For each of the samples a considerable low-temperature negative magnetoresistance was found, whose magnitude in the studied range decreases with increasing iron concentration. The observed results obtained on the present compounds are qualitatively explained assuming that the absolute strengths of magnetic exchange interactions are subject to the relation ∣JCo–Co∣<∣JFe–Co∣<∣JFe–Fe∣.  相似文献   

16.
The effect of Te-doping at La-site on structural, magnetic and transport properties in the manganites La0.7Sr0.3−xTexMnO3 (0≤x≤0.15) has been investigated. All samples show a rhombohedral structure with the space group . It shows that the Mn-O-Mn bond angle decreases and the Mn-O bond length increases with the increase of Te content. The Curie temperature TC decreases with increasing Te-doping level, in contrast, the magnetization magnitude of Te-doping samples at low temperatures increase with increasing x as x≤0.05 and then decrease with further increasing x to 0.15. The results are discussed in terms of the combined effects of the opening of the new double exchange (DE) channel between Mn2+-O-Mn3+ due to the introduction of Mn2+ ions because of the substitution of Te4+ for Sr2+ and the reduction of the transfer integral b due to the decrease of the Mn-O-Mn bond angle.  相似文献   

17.
鲁毅  李庆安  邸乃力  成昭华 《物理学报》2003,52(6):1520-1523
对Nd0.5Sr0.4Pb0.1Mn1-xFex O3系列多晶样品的结构,磁和转变特性进行了实验研究.在x=0.00—0.10的范围内获得了单相样品,Fe3+的替代并没有引起整个系列的结构变化,然而Mn位的掺杂却强烈地抑制了Nd 0.5Sr0.4Pb0.1MnO3的铁 关键词: 磁结构 磁性 P')" href="#">磁转变温度TP 双交换作用  相似文献   

18.
We have studied the electronic and magnetic properties of TbFexMn2−xO5 (x=0, 0.125, 0.25) samples using first-principles density functional theory within the generalized gradient approximation (GGA) schemes. The crystal structure of TbMn2O5 is orthorhombic containing Mn4+O6 octahedra and Mn3+O5 pyramids. The structure changes to monoclinic symmetry for the Fe-doping at the Mn sites. Our spin-polarized calculations give an insulating ground state for TbMn2O5 and a metallic ground state for Fe-doped TbMn2O5. Based on the magnetic properties calculations, it is found that the magnetic moment enhances with increase in the Fe-content in TbMn2O5. Most interestingly, the enhanced magnetic moment is due to a substantial reduction of the magnetic moments at the Fe sites.  相似文献   

19.
An experimental study on the magnetic and electrical transport properties of the manganites Bi0.5Ca0.5Mn1−xCrxO3 (BCMCO) (0≤x≤0.12) is carried out. The results show that Cr doping can suppress the charge-ordering transition, favoring the ferromagnetic clusters. For x=0.12, the charge-ordering transition disappears but a very broad paramagnetic-ferromagnetic-like transition is detected at the Curie temperature TC=72.6 K. It is caused by phase separation or coexistence of the charge-ordering and ferromagnetic phase. Moreover, the critical Cr content to destroy charge ordering phase in BCMCO does not match the general monotonous tendencies shown by Cr-doped Re0.5Ca0.5MnO3 (Re-rare-earth). These differences are ascribed to the fact that the ground state in BCMCO differs markedly from the ferromagnetic metallic phase in Cr-doped Re0.5Ca0.5MnO3 compounds.  相似文献   

20.
Composite samples (1−x)La0.7Ca0.2Sr0.1MnO3(LCSMO)+x(ZnO) with different ZnO doping levels x have been investigated systematically. The structure and morphology of the composites have been studied by the X-ray diffraction (XRD) and scanning electronic microscopy (SEM). The XRD and SEM results indicate that no reaction occurs between LCSMO and ZnO grains, and that ZnO segregates mostly at the grain boundaries of LCSMO. The magnetic properties reveal that the ferromagnetic order of LCSMO is weakened by addition of ZnO. The results also show that ZnO has a direct effect on the resistance of LCSMO/ZnO composites, especially on the low-temperature resistance. With increase of the ZnO doping level, TP shifts to a lower temperature and the resistance increases. It is interesting to note that an enhanced magnetoresisitance (MR) effect for the composites is found over a wide temperature range from low temperature to room temperature in an applied magnetic field of 3 kOe. The maximum MR appears at x=0.1. The low field magnetoresistance (LFMR) results from spin-polarized tunneling. However, around room temperature, the enhanced MR of the composites is caused by magnetic disorder.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号