首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Nanocrystalline Co2xNi0.5−xZn0.5−xFe2O4 (x=0−0.5) thin films have been synthesized with various grain sizes by a sol-gel method on polycrystalline silicon substrates. The morphology as well as magnetic and microwave absorption properties of the films calcined at 1073 K were studied using X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, and vibrating sample magnetometry. All films were uniform without microcracks. The Co content in the Co-Ni-Zn films resulted in a grain size ranging from 15 to 32 nm while it ranged from 33 to 49 nm in the corresponding powders. Saturation and remnant magnetization increased with increase in grain size, while coercivity demonstrated a drop due to multidomain behavior of crystallites for a given value of x. Saturation magnetization increased and remnant magnetization had a maximum as a function of grain size independent of x. In turn, coercivity increased with x independent of grain size. Complex permittivity of the Co-Ni-Zn ferrite films was measured in the frequency range 2-15 GHz. The highest hysteretic heating rate in the temperature range 315-355 K was observed in CoFe2O4. The maximum absorption band shifted from 13 to 11 GHz as cobalt content increased from x=0.1 to 0.2.  相似文献   

2.
Zn1−xNixFe2O4 ferrite nanoparticles were prepared by sol–gel auto-combustion and then annealed at 700 °C for 4 h. The results of differential thermal analysis indicate that the thermal decomposition temperature is about 210 °C and Ni–Zn ferrite nanoparticles could be synthesized in the self-propagating combustion process. The microstructure and magnetic properties were investigated by means of X-ray diffraction, scanning electron microscope, and Vibrating sample magnetometer. It is observed that all the spherical nanoparticles with an average grain size of about 35 nm are of pure spinel cubic structure. The crystal lattice constant declines gradually with increasing x from 0.8435 nm (x=0.20) to 0.8352 nm (x=1.00). Different from the composition of Zn0.5Ni0.5Fe2O4 for the bulk, the maximum Ms is found in the composition of Zn0.3Ni0.7Fe2O4 for nanoparticles. The Hc of samples is much larger than the bulk ferrites and increases with the enlarging x. The results of Zn0.3Ni0.7Fe2O4 annealed at different temperatures indicate that the maximum Ms (83.2 emu/g) appears in the sample annealed at 900 °C. The Hc of Zn0.3Ni0.7Fe2O4 firstly increases slightly as the grain size increases, and presents a maximum value of 115 Oe when the grains grow up to about 30 nm, and then declines rapidly with the grains further growing. The critical diameter (under the critical diameter, the grain is of single domain) of Zn0.3Ni0.7Fe2O4 nanoparticles is found to be about 30 nm.  相似文献   

3.
A series of polycrystalline ferrites having nominal chemical composition Co0.50−xMnxZn0.5Fe2O4 (0<x<0.4) have been synthesized by the solid-state reaction technique. The XRD analysis confirms single phase cubic spinel structure for all compositions. Lattice constant increases from 0.84195 to 0.84429 nm with the increasing Mn content and obeys Vegard's law. The average grain size increases by increasing both Mn content and sintering temperatures. Room temperature saturation magnetization increases for x=0.1 and decreases for increasing Mn content. The coercivity decreases with increasing Mn content due to the decrease of anisotropy constant. A reentrant spin glass behavior of these samples is observed from the zero field cooled magnetization measurements. The real part of the initial permeability increases by increasing both Mn content and sintering temperatures. This is due to the homogeneous grain growth and densification of the ferrites. The highest initial permeability 137 is observed for x=0.4 sintered at 1573 K on the other hand, the highest relative quality factor (2522) is obtained for the sample Co0.2Mn0.3Zn0.5Fe2O4 sintered at 1523 K. The Mn substituted Co0.50−xMnxZn0.5Fe2O4 ferrites showed improved magnetic properties.  相似文献   

4.
Polycrystalline thin films of Fe3−xZnxO4 (x = 0.0, 0.01 and 0.02) were prepared by pulsed-laser deposition technique on Si (1 1 1) substrate. X-ray diffraction studies of parent as well as Zn doped magnetite show the spinel cubic structure of film with (1 1 1) orientation. The order–disorder transition temperature for Fe3O4 thin film with thickness of 150 nm are at 123 K (Si). Zn doping leads to enhancement of resistivity by Zn2+ substitution originates from a decrease of the carrier concentration, which do not show the Verwey transition. The Raman spectra for parent Fe3O4 on Si (1 1 1) substrate shows all Raman active modes for thin films at energies of T2g1, T2g3, T2g2, and A1g at 193, 304, 531 and 668 cm−1. It is noticed that the frequency positions of the strongest A1g mode are at 668.3 cm−1, for all parent Fe3O4 thin film shifted at lower wave number as 663.7 for Fe2.98Zn0.02O4 thin film on Si (1 1 1) substrate. The integral intensity at 668 cm−1 increased significantly with decreasing doping concentration and highest for the parent sample, which is due to residual stress stored in the surface.  相似文献   

5.
The magnetic and magnetoresistive properties of spinel-type Zn1−xCoxFe2O4 (x=0, 0.2 and 0.4) ferrites are extensively investigated in this study. A large negative magnetoresistance (MR) effect is observed in Zn1−xCoxFe2O4 ferrites of spinel structure. These materials are either ferrimagnetic or paramagnetic at room temperature, and show a spin-(cluster) glass transition at low temperatures, depending on the chemical compositions. The MR curves as a function of magnetic fields, MR(H), are parabolic at all temperatures for paramagnetic polycrystalline ZnFe2O4. The MR for ZnFe2O4 at 110 K in the presence of 9 T applied magnetic field is 30%. On the other hand, MR(H) are linear for x=0.2 and 0.4 ferrimagnetic Zn1−xCoxFe2O4 samples up to 9 T. The MR effect is independent of the sintering temperatures, and can be explained with the help of the spin-dependent scattering and the Yafet–Kittel angle of Zn1−xCoxFe2O4 mixed ferrites.  相似文献   

6.
A series of bulk polycrystalline Ag-added Fe3O4 with a nominal composition, (Fe3O4)1−xAgx (x is molar fraction) with x=0, 0.1, 0.2, 0.3, 0.4, and 0.5 have been prepared by conventional solid-state reaction. X-ray diffraction patterns show that the pure Fe3O4 sample (x=0) has a single-phase inverse spinel structure, while the Ag-added samples are two-phase composites consisting of a ferrimagnetic Fe3O4 phase and a non-magnetic metal Ag phase. The bright-field transmission electron microscopy images exhibit that the samples are typical granular solids with a porosity of about 22%. The addition of Ag slightly increases the average grain size of the Fe3O4 phase and significantly enhances the MR effect of bulk polycrystalline Fe3O4 samples. Of all the samples the x=0.3 sample has a maximal MR of −5.1% at 300 K in a magnetic field of 1 T, and −6.8% in 5 T, which are approximately three times greater than the corresponding MR values (−1.8% at 1 T and −2.4% at 5 T) of the Fe3O4 sample. This enhancement of the MR can be attributed to the combination effect from the spin-dependent scattering at the interfaces between the Fe3O4 grains and the Ag granules and the spin-polarized tunneling at grain boundaries of Fe3O4 phase of the spin-polarized electrons.  相似文献   

7.
Nanocrystalline zinc-substituted cobalt ferrite powders, Co1−xZnxFe2O4 (x=0, 0.2, 0.4), were for the first time prepared by forced hydrolysis method. Magnetic and structural properties in these specimens were investigated. The average crystallite size is about 3.0 nm. When the zinc substitution increases from x=0 to x=0.4, at 4.2 K, the saturation magnetization increases from 72.1 to 99.7 emu/g and the coercive field decreases from 1.22 to 0.71 T. All samples are superparamagnetic at room temperature and ferrimagnetic at temperatures below the blocking temperature. The high value of the saturation magnetization and the very thin thickness of the disorder surface layer of all samples suggests that this forced hydrolysis method is suitable not only for preparing two metal element systems but also for three or more ones.  相似文献   

8.
Zinc-substituted cobalt ferrites, Co1–xZnxFe2O4, were for the first time successfully prepared by forced hydrolysis method. The obtained materials are single phase, monodispersed nanocrystalline with an average grain size of about 3 nm. These materials are superparamagnetic at room temperature and ferrimagnetic at temperature lower than the blocking temperature. When the zinc substitution increases from x=0 to 0.4, at 4.2 K, the saturation magnetization increases from 72.1 to 99.7 emu/g. The high saturation magnetization of these samples suggests that this method is suitable for preparing high-quality nanocrystalline magnetic ferrites for practical applications.  相似文献   

9.
Li0.5Fe2.5−xMnxO4 (0≦x≦1.0) powders with small and uniformly sized particles were successfully synthesized by microwave-induced combustion, using lithium nitrate, ferric nitrate, manganese nitrate and carbohydrazide as the starting materials. The process takes only a few minutes to obtain as-received Mn-substituted lithium ferrite powders. The resultant powders annealed at 650 °C for 2 h and were investigated by thermogravimeter/differential thermal analyzer (TG/DTA), X-ray diffractometer (XRD), transmission electron microscopy (TEM), vibrating sample magnetometer (VSM), and thermomagnetic analysis (TMA). The results revealed that the Mn content were strongly influenced the magnetic properties and Curie temperature of Mn-substituted lithium ferrite powder. As for sintered Li0.5Fe2.5−xMnxO4 specimens, substituting an appropriate amount of Mn for Fe in the Li0.5Fe2.5−xMnxO4 specimens markedly improved the complex permeability and loss tangent.  相似文献   

10.
Cd1−xMnxS nano-crystalline films (0 ≤ x ≤ 0.5) were formed on glass substrates by thermal evaporation technique at room temperature (300 K). AFM studies showed that all the films were in nano-crystalline form with the grain size varying in the range between 36 and 58 nm and exhibited hexagonal structure of the host material. The lattice parameters varied linearly with composition, following Vegard's law in the entire composition range. The nanohardness and Young's modulus decreased sharply with ‘Mn’ content upto x = 0.3 and increased with high Mn content.  相似文献   

11.
The magnetic behavior of the FeInxCr2−xSe4 system (with x=0.0, 0.2 and 0.4) has been investigated by magnetic and Mössbauer spectroscopy. Hyperfine parameters indicate that iron is in the Fe2+ oxidation state, with a minor (∼9%) Fe3+ fraction, located at different layers in the structure. Low-field magnetization curves as a function of temperature showed that the antiferromagnetic (AFM) order temperature is TN=208(2) K for FeCr2Se4 and decreases to 174(3) K for FeIn0.4Cr1.6Se4. The effective magnetic moment μeff decreases with increasing In contents, and shows agreement with the expected values from the contribution of Fe2+ (5D) and Cr3+ (4F) electronic states. A second, low-temperature transition is observed at TG∼13 K, which has been assigned to the onset of a glassy state.  相似文献   

12.
Co1−xZnxFe2O4 nanoparticles were prepared by co-precipitation method with x varying from 0 to 1.0. The powder samples were characterized by X-ray diffraction (XRD), vibrating sample magnetometer (VSM) and Fourier transform infrared spectroscopy (FTIR). The average crystallite sizes of the particles were determined from XRD. X-ray analysis showed that the samples were cubic spinel. The average crystallite size (DaveXR) of the particles precipitated was found to vary from 6.92 to 12.02 nm decreasing with the increase in zinc substitution. The lattice constant (ao) increased with the increase in zinc substitution. The specific saturation magnetization (MS) of the particles was measured at room temperature. The magnetic parameters such as MS, Hc, and Mr were found to decrease with the increase in zinc substitution. FTIR spectra of the Co1−xZnxFe2O4 with x varying from 0 to 1.0 in the range 400–4000 cm−1 were reported. The spinel structure and the crystalline water adsorption of Co1−xZnxFe2O4 nanoparticles were studied by using FTIR.  相似文献   

13.
We have studied the effect of Fe substitution on magnetic and magnetocaloric properties in La0.7Sr0.3Mn1−xFexO3 (x=0.05, 0.07, 0.10, 0.15, and 0.20) over a wide temperature range (T=10-400 K). It is shown that substitution by Fe gradually decreases the ferromagnetic Curie temperature (TC) and saturation magnetization up to x=0.15 but a dramatic change occurs for x=0.2. The x=0.2 sample can be considered as a phase separated compound in which both short-range ordered ferromagnetic and antiferromagnetic phases coexist. The magnetic entropy change (−ΔSm) was estimated from isothermal magnetization curves and it decreases with increase of Fe content from 4.4 J kg−1 K−1 at 343 K (x=0.05) to 1.3 J kg−1 K−1 at 105 K (x=0.2), under ΔH=5 T. The La0.7Sr0.3Mn0.93Fe0.07O3 sample shows negligible hysteresis loss, operating temperature range over 60 K around room temperature with refrigerant capacity of 225 J kg−1, and magnetic entropy of 4 J kg−1 K−1 which will be an interesting compound for application in room temperature refrigeration.  相似文献   

14.
Phase relationships, thermal expansion and electrical properties of Mg1 − xFexO (x = 0.1-0.45) cubic solid solutions and Fe3 − x − yMgxCryO4 ± δ (x = 0.7-0.95; y = 0 or 0.5) spinels were studied at 300-1770 K in the oxygen partial pressure range from 10 Pa to 21 kPa. Increasing iron content enlarges the spinel phase stability domain at reduced oxygen pressures and elevated temperatures. The total conductivity of the spinel ceramics is predominantly n-type electronic and is essentially p(O2)-independent within the stability domain. The computer simulations using molecular dynamics technique confirmed that overall level of ion diffusion remains low even at high temperatures close to the melting point. Temperature dependencies of the total conductivity in air exhibit a complex behavior associated with changing the dominant defect-chemistry mechanism from prevailing formation of the interstitial cations above 1370-1470 K to the generation of cation vacancies at lower temperatures, and with kinetically frozen cation redistribution in spinel lattice below 700-800 K. The average thermal expansion coefficients of the spinel ceramics calculated from dilatometric data in air vary in the range (9.6-10.0) × 10− 6 K− 1 at 300-500 K and (13.2-16.1) × 10− 6 K− 1 at 1050-1370 K. Mg1 − xFexO solid solutions undergo partial decomposition on heating under oxidizing and mildly reducing conditions, resulting in the segregation of spinel phase and conductivity decrease.  相似文献   

15.
Strontium zinc zirconium hexaferrites/polyaniline (Sr(ZnZr)xFe12−2xO19-PANI, x=0, 0.5, 1.0) composites were synthesized by oxidative chemical polymerization of aniline in the presence of ammonium peroxydisulfate (APS). The structure and morphology of the product was characterized by FTIR, TGA and SEM. The particle size of the core material was found to be about 250-500 nm. After coating with polyaniline, the particle size of Sr(ZnZr)0.5Fe11O19-PANI composites grew upto 0.5-1.0 μm. XRD of the ferrites indicated that the structure of the core materials is hexagonal, with lattice constants around 5.886-5.885 Å. It was found that the saturation magnetization (MS) and coercivity (HC) for Sr(ZnZr)xFe12−2xO19-PANI composites decreased after polyaniline coating. The composite under applied magnetic field, exhibited ferromagnetic hysteretic loops with high saturation magnetization (MS=18.9-3.8 emu/g) and coercivity (HC=3850.0-583.91 Oe).  相似文献   

16.
Ultrafine Ce1−xNdxO2−δ (x=0-0.25) powders were synthesized by self-propagating room temperature synthesis. Raman spectra were measured at room temperature in the 300-700 cm−1 spectral range. The shift and asymmetric broadening of the Raman F2g mode at about 454 cm−1 in pure and doped ceria samples could be explained with combined size and inhomogenous strain effects. Increased concentration of O2− vacancies with doping is followed by an appearance of new Raman feature at about 545 cm−1.  相似文献   

17.
The conducting oxides solid solutions of Cd1+xIn2−2xSnxO4 (x=0.1, 0.3, 0.5, 0.7, 1.0) were prepared via a solid state reaction method. The band gaps were estimated to be 2.4 eV for x=1.0, 2.5 eV for x=0.7, 2.6 eV for x=0.5, 2.7 eV for x=0.3 and 2.8 eV for x=0.1. Oxygen could be evolved over Cd2SnO4 under the irradiation of Xe-lamp or even visible light (λ>420 nm), while the others could only work in the UV-light range. Raman showed the cation distribution in Cd2SnO4 is ordered, while that in the others is disordered. The cations distribution was proposed to be the cause of the difference in photocatalytic O2-evolution activities.  相似文献   

18.
The structural, superconducting and magnetic properties of La2Cu1−xZnxO4+δ (0≤x≤0.1) chemically oxidized by NaClO at room temperature were studied. All the samples before and after oxidation are single phase with orthorhombic structure, as indicated by their powder X-ray diffraction analysis. The iodometric titration results indicate that Zn-substituted La2Cu1−xZnxO4 is more favorable for the insertion of the excess oxygen, as compared to the Zn-free La2CuO4. The Tc suppression rate resulting from Zn substitution in La2Cu1−xZnxO4+δ is −12.4 K/%. The effective magnetic moment induced by the non-magnetic Zn ion is the order of one Bohr magneton, which decreases with increasing the Zn concentrations in the range examined. The latter two results are qualitatively well consistent with those obtained in La2−xSrxCu1−yZnyO4 with the Sr optimal doping. This reveals that the non-magnetic Zn ions play the same role in both of the La2Cu1−xZnxO4+δ with the excess oxygen content of about 0.1 and the La2−xSrxCu1−yZnyO4 with the Sr optimal doping.  相似文献   

19.
Zn1−xCoxO (0 ≤ x ≤ 0.15) thin films grown on Si (1 0 0) substrates were prepared by a sol-gel technique. The effects of Co doped on the structural, optical properties and surface chemical valence states of the Zn1−xCoxO (0 ≤ x ≤ 0.15) films were investigated by X-ray diffraction (XRD), ultraviolet-visible spectrometer and X-ray photoelectron spectroscopy (XPS). XRD results show that the Zn1−xCoxO films retained a hexagonal crystal structure of ZnO with better c-axis preferred orientation compared to the undoped ZnO films. The optical absorption spectra suggest that the optical band-gap of the Zn1−xCoxO thin films varied from 3.26 to 2.79 eV with increasing Co content from x = 0 to x = 0.15. XPS studies show the possible oxidation states of Co in Zn1−xCoxO (0 ≤ x ≤ 0.05), Zn0.90Co0.10O and Zn0.85Co0.15O are CoO, Co3O4 and Co2O3, with an increase of Co content, respectively.  相似文献   

20.
Fe1−xCox alloy microparticles with size 3-5 μm and novel flower-like shapes were prepared by a simple low temperature reduction method. The electromagnetic properties for the paraffin matrix composites containing Fe1−xCox alloy microparticles were measured using a vector network analyzer in the 2-18 GHz frequency range. As a consequence of large surface- and shape-anisotropy energy for the flower-like shaped 3D microstructures, the strong natural resonance around 8-12 GHz and remarkable dielectric relaxation were observed in the complex permittivity and permeability spectrum, which are dominant in the enhanced electromagnetic wave absorption (EMA) performance. It was found that both the electromagnetic parameters of complex permittivity and permeability and the intensity and location of absorption band were remarkably dependent on the Co/Fe molar ratio. The enhanced EMA performance was obtained in these Fe1−xCox-paraffin (x=0.4, 0.5, and 0.6) composites system. For the Fe0.5Co0.5 alloy, the reflection loss (RL) exceeding −20 dB was obtained in the broad frequency range of 5.4-18 GHz with a thin sample thickness of between 1.0 and 2.9 mm. In particular, an optimal RL of −59 dB was obtained at 3.61 GHz with a thin thickness of 3.6 mm for the Fe0.4Co0.6 sample. The Fe1−xCox alloy microparticles may be attractive candidates for applications of microwave absorption materials with a wide frequency range and strong absorption in the high frequency region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号