首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The interaction of 1,3-butadiene, 1-butene and 2-cis/trans-butenes on the Pt(1 1 1) and Pd(1 1 1) surfaces has been studied with density functional theory methods (DFT). The same most stable adsorption modes have been found on both metal surfaces with similar adsorption energies. For 1,3-butadiene the 1,2,3,4-tetra-σ adsorption structure is shown to be the most stable one, in competition with a 1,4-metallacycle-type mode, which is only less stable by 10-12 kJ mol−1. On Pt(1 1 1) these total energy calculations were combined with simulations of the vibrational spectra. This confirms that the 1,2,3,4-tetra-σ adsorption is the most probable adsorption structure, but cannot exclude the 1,4-metallacycle as a minority species. Although similar in type and energy, the adsorption on the Pd(1 1 1) surface shows a markedly different geometry, with a smaller molecular distortion upon adsorption. The most stable adsorption structure for the butene isomers is the di-σ-mode. Similarly to the case of the 1,3-butadiene, the adsorption geometry is closer to the gas phase one on Pd than on Pt, hence explaining the different spectroscopic results, without the previously assumed requirement of a different binding mode. Moreover the present study has shown that the different selectivity observed on Pt(1 1 1) and Pd(1 1 1) for the hydrogenation reaction of butadiene cannot be satisfactory explained by the single comparison of the relative stabilities of 1,3-butadiene and 1-butene on these metals.  相似文献   

2.
The formic acid and methanol oxidation reaction are studied on Pt(1 1 1) modified by a pseudomorphic Pd monolayer (denoted hereafter as the Pt(1 1 1)-Pd1 ML system) in 0.1 M HClO4 solution. The results are compared to the bare Pt(1 1 1) surface. The nature of adsorbed intermediates (COad) and the electrocatalytic properties (the onset of CO2 formation) were studied by FTIR spectroscopy. The results show that Pd has a unique catalytic activity for HCOOH oxidation, with Pd surface atoms being about four times more active than Pt surface atoms at 0.4 V. FTIR spectra reveal that on Pt atoms adsorbed CO is produced from dehydration of HCOOH, whereas no CO adsorbed on Pd can be detected although a high production rate of CO2 is observed at low potentials. This indicates that the reaction can proceed on Pd at low potentials without the typical “poison” formation. In contrast to its high activity for formic acid oxidation, the Pd film is completely inactive for methanol oxidation. The FTIR spectra show that neither adsorbed CO is formed on the Pd sites nor significant amounts of CO2 are produced during the electrooxidation of methanol.  相似文献   

3.
E.L. Wilson  G. Thornton 《Surface science》2006,600(12):2555-2561
Reflection absorption infrared spectroscopy (RAIRS) has been used to investigate the adsorption of CO on CeO2−x-supported Pd nanoparticles at room temperature. The results show that when CeO2−x is initially grown on Pt(1 1 1), a small proportion of the surface remains as bare Pt sites. However, when Pd is deposited onto CeO2−x/Pt(1 1 1), most of the Pd grows directly on top of the CeO2−x(1 1 1). RAIR spectra of CO adsorption on 1 ML Pd/CeO2−x/Pt(1 1 1) show a broad CO-Pd band, which is inconsistent with a single crystal Pd surface. However, the 5 ML and 10 ML Pd/CeO2−x/Pt(1 1 1) spectra show vibrational bands consistent with the presence of Pd(1 1 1) and (1 0 0) faces, suggesting the growth of Pd nanostructures with well defined facets.  相似文献   

4.
Pt/Pd anode catalysts for direct formic acid polymer electrolyte membrane fuel cells outperform both Pt and Pd in steady-state electrooxidation trials. Temperature-programmed desorption (TPD) experiments in ultra-high vacuum (UHV) were performed with 1 L formic acid on clean Pt(1 1 0), 0.6 monolayers Pd/Pt(1 1 0), and multilayer Pd/Pt(1 1 0) to gain a better understanding of the effect of Pd additions to a Pt catalyst. Both dehydration and dehydrogenation of formic acid occur on all three surfaces. As Pd coverage increases, the activation barrier for formate decomposition to CO2 decreases, but the effect does not explain the unusual activity of Pt/Pd in the electrochemical environment.  相似文献   

5.
Haibo Zhao 《Surface science》2009,603(23):3355-12149
The influence of hydrogen coadsorption on hydrocarbon chemistry on transition metal surfaces is a key aspect to an improved understanding of catalytic selective hydrogenation. We have investigated the effects of H preadsorption on adsorption and reaction of 1,3-butadiene (H2CCHCHCH2, C4H6) on Pt(1 1 1) surfaces by using temperature-programmed desorption (TPD) and Auger electron spectroscopy (AES). Preadsorbed hydrogen adatoms decrease the amount of 1,3-butadiene chemisorbed on the surface and chemisorption is completely blocked by the hydrogen monolayer (saturation) coverage (θH = 0.92 ML). No hydrogenation products of reactions between coadsorbed H adatoms and 1,3-butadiene were observed to desorb in TPD experiments over the range of θH investigated (θH = 0.6-0.9 ML). This is in strong contrast to the copious evolution of ethane (CH3CH3, C2H6) from coadsorbed hydrogen and ethylene (CH2CH2, C2H4) on Pt(1 1 1). Hydrogen adatoms effectively (in a 1:1 stoichiometry) remove sites from interaction with chemisorbed 1,3-butadiene, but do not affect adjacent sites. The adsorption energy of coadsorbed 1,3-butadiene is not affected by the presence of hydrogen on Pt(1 1 1). The chemisorbed 1,3-butadiene on hydrogen preadsorbed Pt(1 1 1) completely dehydrogenates to H2 and surface carbon upon heating without any molecular desorption detected, which is identical to that observed on clean Pt(1 1 1). In addition to revealing aspects of site blocking that should have broad implications for hydrogen coadsorption with hydrocarbon molecules on transition metal surfaces in general, these results also provide additional basic information on the surface science of selective catalytic hydrogenation of butadiene in butadiene-butene mixtures.  相似文献   

6.
J.M. Essen  K. Wandelt 《Surface science》2007,601(16):3472-3480
The adsorption of ethene (C2H4) on Pt(1 1 1) and the Pt3Sn/Pt(1 1 1) and Pt2Sn/Pt(1 1 1) surface alloys has been investigated experimentally by high-resolution electron energy loss spectroscopy and temperature programmed desorption. The experimental results have been compared with density functional theory (DFT) calculations allowing us to perform a complete assignment of all vibration modes and loss features to the species present on the surfaces. On Pt(1 1 1) as well as on the Pt-Sn surface alloys an η2 di-σ-bonded conformation of ethene has been found to be the most stable adsorbed form. In addition to this majority species a minor amount of π-bonded ethene has been identified, which is more abundant on the Pt2Sn surface alloy than on the other surfaces. Additionally the HREELS spectra of ethene on Pt(1 1 1) and the Pt-Sn surface alloys differ only slightly in terms of the energetic positions of the loss peaks.  相似文献   

7.
Methylidyne (CH) was prepared on Pt(1 1 1) by three methods: thermal decomposition of diiodomethane (CH2I2), ethylene decomposition at temperatures above 450 K, and surface carbon hydrogenation. Methylidyne and its precursors are characterized by reflection absorption infrared spectroscopy (RAIRS). The C-I bond of diiodomethane breaks upon adsorption to produce methylene (CH2), which decomposes to methylidyne at temperatures above 130 K. Above 200 K, methylidyne is the only hydrocarbon species observed with RAIRS, although reaction channels for the formation of methane (CH4) and ethylene (C2H4) are indicated by temperature programmed desorption (TPD). As is well known from numerous previous studies, ethylene decomposes to ethylidyne (CCH3) upon exposure to Pt(1 1 1) at 410 K. Upon annealing to 450 K, ethylidyne dissociates through two reaction pathways, dehydrogenation to ethynyl (CCH) and C-C bond scission to methylidyne. Ethylene dehydrogenation on the surface at 750 K and under low ethylene exposures produces surface carbon that can be hydrogenated to methylidyne with C-H and C-D stretch frequencies of 2956 and 2206 cm−1, respectively. Hydrogen co-adsorption on the surface causes these frequencies to shift to higher values. Methylidyne is stable on Pt(1 1 1) to temperatures up to 500 K.  相似文献   

8.
The self-assembled monolayers prepared from 1-dodecanethiol (C12SH) or S-dodecylthiosulfate (Bunte salt, C12SSO3Na) have been characterised on polycrystalline gold and platinum surfaces and on Pt(1 1 1). Contact angle and impedance measurements show that the film quality decreases in the order Au/C12SH > Pt/C12SH ∼ Au/C12SSO3Na > Pt/C12S SO3Na. XPS measurements show that the S-SO3 bond of organic thiosulfates is broken on platinum surfaces and the state of the surface-bound sulfur is indistinguishable from that of thiolate. On platinum three sulfur species are formed upon SAM formation and we suggest that the catalytic activity of platinum is responsible for their existence in pristine monolayers.  相似文献   

9.
Thin films of pentacene (C22H14) have become widely used in the field of organic electronics. Here films of C22H14 of thickness ranging from submonolayer to multilayer were thermally deposited on Ag(1 1 1) surface. The determination of molecular geometry in pentacene films on Ag(1 1 1) studied by X-ray absorption at different stages of growth up to one monolayer is presented.XAS spectra at the C K-edge were collected as a function of the direction of the electric field at the surface. The different features of the spectra were assigned to resonances related to the various molecular unoccupied states by the comparison with the absorption coefficient of the pentacene gas phase. The transitions involving antibonding π states show a pronounced angular dependence for all the measured coverages, from submonolayer to multilayer. The spectra analysis indicates a nearly planar chemisorption of the first pentacene layer with a tilt angle of 10°.  相似文献   

10.
Z. Dohnálek 《Surface science》2006,600(17):3461-3471
Thin Pd films (1-10 monolayers, ML) were deposited at 35 K on a Pt(1 1 1) single crystal and on an oxygen-terminated FeO(1 1 1) monolayer supported on Pt(1 1 1). Low energy electron diffraction, Auger electron spectroscopy, and Kr and CO temperature programmed desorption techniques were used to investigate the annealing induced changes in the film surface morphology. For growth on Pt(1 1 1), the films order upon annealing to 500 K and form epitaxial Pd(1 1 1). Further annealing above 900 K results in Pd diffusion into the Pt(1 1 1) bulk and Pt-Pd alloy formation. Chemisorption of CO shows that even the first ordered monolayer of Pd on Pt(1 1 1) has adsorption properties identical to bulk Pd(1 1 1). Similar experiments conducted on FeO(1 1 1) indicate that 500 K annealing of a 10 ML thick Pd deposit also yields ordered Pd(1 1 1). In contrast, annealing of 1 and 3 ML thick Pd films did not result in formation of continuous Pd(1 1 1). We speculate that for these thinner films Pd diffuses underneath the FeO(1 1 1).  相似文献   

11.
The thermal chemistry of diiodomethane on Ni(1 1 0) single-crystal surfaces was studied by temperature-programmed desorption (TPD) and X-ray photoelectron spectroscopy (XPS). Diiodomethane was chosen as a precursor for the formation of methylene surface species. I 3d and C 1s XPS data indicated that, indeed, adsorbed diiodomethane undergoes the C-I bond dissociations needed for that transformation, and detection of iodomethane production in TPD experiments pointed to the stepwise nature of those reactions. Significant amounts of methane are produced from further thermal activation of the chemisorbed methylene groups. This involves surface hydrogen, both coadsorbed from background gases and produced by dehydrogenation of some of the adsorbed diiodomethane, and can be induced at temperatures as low as about 160 K, right after the C-I bond breaking steps. Unique to this system is the detection of significant amounts, up to 10% of the total CH2I2 adsorbed, of heavier hydrocarbons, including ethene, ethane, propene, propane, and butene. Deuterium labeling experiments were used to provide support for a mechanism where the initial hydrogenation of some adsorbed methylene to methyl moieties is followed by a rate-limiting methylene insertion step to yield ethyl intermediates. Facile subsequent β-hydride elimination and reductive elimination with coadsorbed hydrogen account for the formation of ethene and ethane, respectively, while a second and third methylene insertions lead to C3 and C4 production. Based on the final product distribution, the methylene insertion was estimated to be approximately 20 times slower than the following hydrogenation-dehydrogenation reactions. Normal kinetic isotope effects were observed for most of the hydrogenation and dehydrogenation reactions involved.  相似文献   

12.
Infrared reflection absorption spectroscopy (IRRAS) was used to investigate carbon monoxide (CO) adsorption on 0.15 nm-thick-0.6 nm-thick Pd-deposited Pt(1 1 1) bimetallic surfaces: Pdx/Pt(1 1 1) (where x is the Pd thickness in nanometers) fabricated using molecular beam epitaxial method at substrate temperatures of 343 K, 473 K, and 673 K. Reflection high-energy electron diffraction (RHEED) measurements for Pd0.15-0.6 nm/Pt(1 1 1) surfaces fabricated at 343 K showed that Pd grows epitaxially on a clean Pt(1 1 1), having an almost identical lattice constant of Pt(1 1 1). The 1.0 L CO exposure to the clean Pt(1 1 1) at room temperature yielded linearly bonded and bridge-bonded CO-Pt bands at 2093 and 1855 cm−1. The CO-Pt band intensities for the CO-exposed Pdx/Pt(1 1 1) surfaces decreased with increasing Pd thickness. For Pd0.3 nm/Pt(1 1 1) deposited at 343 K, the 1933 cm−1 band caused by bridge-bonded CO-Pd enhanced the spectral intensity. The linear-bonded CO-Pt band (2090 cm−1) almost disappeared and the bridge-bonded CO-Pd band dominated the spectra for Pd0.6 nm/Pt(1 1 1). With increasing substrate temperature during the Pd depositions, the relative band intensities of the CO-Pt/CO-Pd increased. For the Pd0.3 nm/Pt(1 1 1) deposited at 673 K, the linear-bonded CO-Pt and bridge-bonded CO-Pd bands are located respectively at 2071 and 1928 cm−1. The temperature-programmed desorption (TPD) spectrum for the 673 K-deposited Pd0.3 nm/Pt(1 1 1) showed that a desorption signal for the adsorbed CO on the Pt sites decreased in intensity and shifted ca. 20 K to a lower temperature than those for the clean Pt(1 1 1). We discuss the CO adsorption behavior on well-defined Pd-deposited Pt(1 1 1) bimetallic surfaces.  相似文献   

13.
Kenji Nakao 《Surface science》2007,601(18):3796-3800
The infrared (IR) chemiluminescence studies of CO2 formed during steady-state CO oxidation over Pd(1 1 1), Pt(1 1 1), and Rh(1 1 1) surfaces were carried out. Analysis of their emission spectra indicates that the order of the average vibrational temperature () values of CO2 formed during CO oxidation was as follows: Pd(1 1 1) > Pt(1 1 1) > Rh(1 1 1), and the order is coincident with the potential energy in the transition state expected by the theoretical calculations. Furthermore, it is suggested that the bending vibrational temperature () can also be influenced by the angle of O-C-O (∠OCO) of the activated complex in the transition state, which has also been proposed by the theoretical calculations.  相似文献   

14.
Sergio R. Calvo 《Surface science》2007,601(21):4786-4792
The reactivity of Pt-Pd alloy surfaces towards the oxygen reduction reaction is studied as a function of the alloy overall composition and surface atomic distribution and compared to that on pure Pt surfaces. The systems include Pd and Pt monolayers on various substrates and Pt3Pd, PtPd and PtPd3 surfaces of ordered alloys. Reactivity is evaluated on the basis of the adsorption strength of oxygenated compounds which are intermediate species of the four-electron oxygen reduction reaction, separating the effect of the first electron-proton transfer from that of the three last electron-proton transfer steps. None of the alloys are found to provide better sites than those of pure Pt both for O2 dissociation and for the reduction of O and OH to water; with the skin surfaces being the closest to pure Pt. The results are discussed in relation to those found in 10-atom clusters of similar compositions and to experiments.  相似文献   

15.
Temperature-programmed desorption (TPD) and X-ray photoelectron spectroscopy (XPS) have been employed to study the adsorption and photon-induced decomposition of Mo(CO)6. Mo(CO)6 adsorbs molecularly on a Pt(1 1 1) surface with weak interaction at 100 K and desorbs intact at 210 K without undergoing thermal decomposition. Adsorbed Mo(CO)6 undergoes decarbonylation to form surface Mo(CO)x (x ? 5) under irradiation of ultraviolet light. The Mo(CO)x species can release further CO ligands to form Mo adatoms with CO desorption at 285 K. In addition, a fraction of the released CO ligands transfers onto the Pt surface and subsequently desorbs at 350-550 K. The resulting Mo layer deposited on the Pt surface is nearly free of contamination by C and O. The deposited Mo adatoms can diffuse into the bulk Pt at temperatures above 1070 K.  相似文献   

16.
D.M. Riffe  N.D. Shinn  K.J. Kim 《Surface science》2009,603(24):3431-3033
We have measured W and Pt 4f7/2 core-level photoemission spectra from interfaces formed by ultrathin Pt layers on W(1 1 0), completing our core-level measurements of W(1 1 0)-based bimetallic interfaces involving the group-10 metals Ni, Pd, and Pt. With increasing Pt coverage the sequence of W spectra can be described using three interfacial core-level peaks with binding-energy (BE) shifts (compared to the bulk) of −0.220 ± 0.015, −0.060 ± 0.015, and +0.110 ± 0.010 eV. We assign these features to 1D, 2D pseudomorphic (ps), and 2D closed-packed (cp) Pt phases, respectively. For ∼1 ps ML the Pt 4f7/2 BE is 71.40 ± 0.02 eV, a shift of +0.46 ± 0.09 eV with respect to the BE of bulk Pt metal. The W 4f7/2 core-level shifts induced by all three adsorbates are semiquantitatively described by the Born-Haber-cycle based partial-shift model of Nilsson et al. [39]. As with Ni/W(1 1 0), the difference in W 4f7/2 binding energies between ps and cp Pt phases has a large structural contribution. The Pt 4f lineshape is consistent with a small density of states at the Fermi level, reflective of the Pt monolayer having noble-metal-like electronic structure.  相似文献   

17.
Haibo Zhao 《Surface science》2004,573(3):413-425
Adsorption and desorption of trans-decahydronaphthalene (C10H18) and bicyclohexane (C12H22) can be used to probe important aspects of non-specific dehydrogenation leading to surface carbon accumulation and establish better estimates of activation energies for C-H bond cleavage at Pt-Sn alloys. This chemistry was studied on Pt(1 1 1) and the (2 × 2)-Sn/Pt(1 1 1) and (√3 × √3)R30°-Sn/Pt(1 1 1) surface alloys by using temperature programmed desorption (TPD) mass spectroscopy and Auger electron spectroscopy (AES). These hydrocarbons are reactive on Pt(1 1 1) surfaces and fully dehydrogenate at low coverages to produce H2 and surface carbon during TPD. At monolayer coverage, 87% of adsorbed C10H18 and 75% C12H22 on Pt(1 1 1) desorb with activation energies of 70 and 75 kJ/mol, respectively. Decomposition of C10H18 is totally inhibited during TPD on these Sn/Pt(1 1 1) alloys and decomposition of C12H22 is reduced to 10% of the monolayer coverage on the (2 × 2)-Sn/Pt(1 1 1) alloy and totally inhibited on the (√3 × √3)R30°-Sn/Pt(1 1 1) alloy. C10H18 and C12H22 are more weakly chemsorbed on these two alloys compared to Pt(1 1 1) and these molecules desorb in narrow peaks characteristic of each surface with activation energies of 65 and 73 kJ/mol on the (2 × 2) alloy and 60 and 70 kJ/mol on the (√3 × √3)R30°-Sn/Pt(1 1 1) alloy, respectively. Alloyed Sn has little influence on the monolayer saturation coverage of these two molecules, and this is decreased only slightly on these two Sn/Pt(1 1 1) alloys. The use of these two probe molecules enables an improved estimate of the activation energy barriers E* to break aliphatic C-H bonds in alkanes on Sn/Pt alloys; E* = 65-73 kJ/mol on the (2 × 2)-Sn/Pt(1 1 1) alloy and E* ? 70 kJ/mol on the (√3 × √3)R30°-Sn/Pt(1 1 1) alloy.  相似文献   

18.
Max Montano 《Surface science》2006,600(9):1809-1816
A scanning tunneling microscope that can be operated in ultra high vacuum (<10−9 Torr) as well as at high pressures (1 − 103 Torr) has been utilized to study the structures formed by cyclic C6 hydrocarbons adsorbed on a platinum (1 1 1) crystal surface. Catalytic reactions of cyclohexene were also studied in the presence of hydrogen at pressures (up to 200 mTorr) and 300 K-350 K temperature range. Cyclohexane and cyclohexene produced the same adsorbed structure, which is attributed to the partially dehydrogenated π-allyl (C6H9). 1,3-Cyclohexadiene produced structures similar to those produced by benzene. In contrast 1,4-cyclohexadiene forms a structure that we attribute to intact molecular 1,4-cyclohexadiene. During reaction the STM images appear disordered, indicative of rapid diffusion of surface species. Addition of 5 mTorr of CO stops the catalytic activity and forms an ordered structure on the surface.  相似文献   

19.
The effect of coadsorbed oxygen on the thermal chemistry of diiodomethane on Ni(1 1 0) single-crystal surfaces was studied by temperature-programmed desorption (TPD) and X-ray photoelectron spectroscopy (XPS). I 3d and C 1s XPS data indicated that adsorbed diiodomethane undergoes two sequential C-I bond scission steps to ultimately produce methylene surface species, the same as on clean Ni(1 1 0). Moreover, significant amounts of methane and other heavier hydrocarbons are produced after further thermal activation of those chemisorbed methylene groups. The production of alkanes and alkenes, which is accounted for by a chain growth mechanism where the initial hydrogenation of some adsorbed methylene to methyl moieties is followed by a rate-limiting methylene insertion step to yield ethyl intermediates, is inhibited but not fully blocked by the coadsorbed oxygen. New reaction pathways are also opened up by the presence of oxygen in this system, including a direct coupling of two methylene groups to ethene, the insertion of an oxygen atom into a nickel-methylene group to produce formaldehyde, and a parallel methylene insertion chain growth sequence starting from a CH2Iads intermediate to ultimately yield C3H5 and C4H7 unsaturated gas-phase radicals.  相似文献   

20.
CO-H interaction and H bulk dissolution on Pd(1 1 1) were studied by sum frequency generation (SFG) vibrational spectroscopy and density functional theory (DFT). The theoretical findings are particularly important to rationalize the experimentally observed mutual site blocking of CO and H and the effect of H dissolution on coadsorbate structures. Dissociative hydrogen adsorption on CO-precovered Pd(1 1 1) is impeded due to an activation barrier of ∼2.5 eV for a CO coverage of 0.75 ML, an effect which is maintained down to 0.33 ML CO. Preadsorbed hydrogen prevented CO adsorption at 100 K, while hydrogen was replaced from the surface by CO above 125 K. The temperature-dependent site blocking of hydrogen originates from the onset of hydrogen diffusion into the Pd bulk around 125 K, as shown by SFG and theoretical calculations using various approaches. When Pd(1 1 1) was exposed to 1:1 CO/H2 mixtures at 100 K, on-top CO was absent in the SFG spectra although hydrogen occupies only threefold hollow sites on Pd(1 1 1). DFT attributes the absence of on-top CO to H atoms diffusing between hollow sites via bridge sites, thereby destabilizing neighboring on-top CO molecules. According to the calculations, the stretching frequency of bridge-bonded CO with a neighboring bridge-bonded hydrogen atom is redshifted by 16 cm−1 when compared to bridging CO on the clean surface. Implications of the observed effects on hydrogenation reactions are discussed and compared to the C2H4-H coadsorption system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号