共查询到20条相似文献,搜索用时 15 毫秒
1.
Chaio-Ling HsuKe-Hsuan Wang Chien-Hsiang ChangWen-Ping Hsu Yuh-Lang Lee 《Applied Surface Science》2011,257(7):2756-2763
Gold nanoparticles were prepared by two different methods. The first method was chemically grafting the particles with different lengths of alkylthiol (C6SH, C12SH and C18SH). For the second method, the Au particles were surface modified first by mercaptosuccinic acid (MSA) to render a surface with carboxylic acid groups which play a role to physically adsorb cationic surfactant in chloroform. This method was termed physical/chemical method. In the first method, the effects of alkyl chain length and dispersion solvent on the monolayer behavior of surface modified gold nanoparticles was evaluated. The gold nanoparticles prepared by 1-hexanthiol demonstrated the narrowest size distribution. Most of them showed narrower particle size distributions in chloroform than in hexane. For the physical/chemical method, the particles can spread more uniformly on the water surface which is attributed to the amphiphilic character of the particles at the air/water interface. However, the particles cannot pack closely due to the relatively weak particle-particle interaction. The effect of alkyl chain length was also assessed for the second method. 相似文献
2.
采用磁控溅射法制备金团簇纳米颗粒,用透射电镜(TEM)、X射线衍射(XRD)、紫外可见光分光光度计(UV-Vis)和X射线光电子能谱(XPS)等分析手段对其表征,研究了金团簇纳米颗粒的形貌、颗粒度、结构、光吸收性质及物质成份。研究结果表明:制备的金团簇纳米颗粒呈球形,平均粒径在10 nm左右,粒径分布均匀,无团聚、氧化现象,颗粒的结构为面心立方。在519 nm处出现团簇颗粒的表面等离子共振吸收峰,测试得到Au(4f7/2)和Au(4f5/2)电子的结合能分别为83.3 eV和86.9 eV,并且没有出现金的氧化产物。 相似文献
3.
Kristen E. Snell Michel Johnson Mahdi Hesari Hossein Ismaili Mark S. Workentin 《Journal of Physical Organic Chemistry》2013,26(7):601-607
An interfacial diazoketone‐modified gold nanoparticle (AuNP) was prepared and characterized by 1H NMR and IR spectroscopy, TGA and TEM. Irradiation of the diazoketone leads to loss of nitrogen and the formation an interfacial ketene–AuNP via the photo‐Wolff rearrangement, evidenced by the loss of the characteristic C = N = N signal at 2068 cm?1 in the IR spectrum and the growth of a new signal at 2100 cm?1 indicative of the ketene. This ketene is relatively stable in the absence of added nucleophiles, but reacts quickly with oxygen nucleophiles illustrating the potential use of this ketene–AuNP as a template for a wide range of surface modifications. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
4.
Gold (Au) nanoparticles are widely used in diagnosing cancer, imaging, and identification of therapeutic methods due to their particular quantum characteristics. This research presents different types of aqueous models and potentials used in TIP3P, to study the effect of the particle size and density of Au clusters in aquatic environments; so it can be useful to facilitate future investigation of the interaction of proteins with Au nanoparticles. The EAM potential is used to model the structure of gold clusters. It is observed that in the systems with identical gold/water density and different cluster radii, gold particles are distributed in aqueous environment almost identically. Thus, Au particles have identical local densities, and the root mean square displacement (RMSD) increases with a constant slope. However in systems with constant cluster radii and different gold/water densities, Au particle dispersion increases with density; as a result, the local density decreases and the RMSD increases with a larger slope. In such systems, the larger densities result in more blunted second peaks in gold–gold radial distribution functions, owing to more intermixing of the clusters and less FCC crystalline features at longer range, a mechanism that is mediated by the competing effects of gold–water and gold–gold interactions. 相似文献
5.
Douglas Fraser Yaez Ramon Ros Josep Marn Sergio de la Escosura-Muiz Alfredo Alegret Salvador Merkoi Arben 《Journal of nanoparticle research》2008,10(1):97-106
Simple strategies for producing silver and gold nanoparticles (AgNP and AuNP) along with the corresponding core shell nanoparticles (Au–Ag and Ag–Au) by reduction of the metal salts AgBF4 and HAuCl4 by NaBH4 in water will be presented. The morphologies of the obtained nanoparticles are determined by the order of addition of reactants. The obtained NPs, with sizes in the range 3–40 nm, are characterized by transmission electronic microscopy (TEM) and UV–Vis absorption spectroscopy, so as to evaluate their qualities. Moreover, a direct electrochemical detection protocol based on a cyclic voltammetry in water solution that involves the use of glassy carbon electrode is also applied to characterize the prepared NPs. The developed NPs and the related electroanalytical method seem to be with interest for future sensing and biosensing applications including DNA sensors and immunosensors. 相似文献
6.
P.V. Kazakevich G.A. Shafeev G. Viau F. Bozon-Verduraz 《Applied Surface Science》2007,253(19):7831-7834
Experimental results are presented on laser-assisted fragmentation of gold-containing nanoparticles suspended in liquids (either ethanol or water). Two kinds of nanoparticles are considered: (i) elongated Au nanorods synthesized by laser ablation of a gold target immersed in liquid phase; (ii) gold-covered NiCo nanorods with high aspect ratio (θ ∼ 10) synthesized by wet chemistry processes. The shape selectivity induced by laser fragmentation of these nanorods is gained via tuning the wavelength of laser radiation into different parts of the spectrum of their plasmon resonance corresponding to different aspect ratios θ. Fragmentation is performed using three laser wavelengths, involving a Cu vapour laser (510 and 578 nm) and a Nd:YAG (1064 nm). Nanoparticles are characterized by UV-vis spectrometry, Transmission Electron Microscopy (TEM). The effect of laser pulse duration (nanosecond against picosecond range) is also studied in the case of fragmentation with an IR laser radiation. 相似文献
7.
The study of hexanethiol-passivated gold nanoparticles is reported. Depending on the age of the solution two kind of structures are obtained, “foam-like” in fresh solution and “cluster-like” few weeks after the solution preparation. Both kind of structures have been studied regarding to their structural and electrical properties. The cluster-like structures have shown lower electrical resistivity compared to foam-like ones. Some other factors like sonication, have shown to have no effect on the formation of one or another kind of structure. 相似文献
8.
Long Giang BachMd. Rafiqul Islam Yeon Tae JeongYeong Soon Gal Kwon Taek Lim 《Applied Surface Science》2012,258(7):2816-2822
The synthesis of chemically anchored adenosine with biocompatible poly(2-hydroxylethyl methacrylate) grafted gold nanoparticles (Ado-i-PHEMA-g-AuNPs) was realized by employing a simple strategy. Disulfide-containing poly(2-hydroxylethyl methacrylate) (DT-PHEMA) was initially synthesized by atom transfer radical polymerization (ATRP). The formation of DT-PHEMA was confirmed by 1H-NMR and FT-IR. The molecular weight and molecular weight distribution were found to be 9.6 kg/mol and 1.40 from GPC analysis. DT-PHEMA was subsequently used for the synthesis of PHEMA-g-AuNPs by a grafting to protocol. The grafting of DT-PHEMA on the surface of AuNPs was confirmed by FT-IR, TGA, XPS, and EDX analyses. The particle size of the PHEMA-g-AuNPs was found to be ca. 5.0 nm from HR-TEM analysis. Boronic acid was used for functionalization of PHEMA-g-AuNPs, which was then subjected for covalent immobilization with adenosine via strong interaction between free hydroxyl groups of adenosine and boronic acid. Characterization and properties of the Ado-i-PHEMA-g-AuNPs were investigated by taking advantage from FT-IR, XPS, EDX, and UV-visible spectroscopy. The Ado-i-PHEMA-g-AuNPs nanocomposite exhibits a surface plasmon resonance peak at 586 nm which is red shifted from AuNPs (521 nm), indicating significant changes of surface property upon PHEMA-adenosine immobilization onto the surface of AuNPs. 相似文献
9.
Emilia Giorgetti Anna Giusti Simona Laza Giovanna Dellepiane 《Applied Surface Science》2007,254(4):1140-1144
Gold nanoparticles are produced in the form of colloidal suspensions in water by ps laser ablation of a metallic target. The fifth generation of ethylenediamine-core poly(amidoamine) (PAMAM G5) is used as a capping agent. Thanks to the ability of PAMAM to encapsulate and stabilize gold cations within its inner cavities, it is possible to evidence, by simple UV-visible spectroscopy, a photo-fragmentation process induced by the 532 nm radiation, which is resonant with the absorption plasmon band of gold nanoparticles. This effect, that can be also exploited to control the size and shape of gold nanoparticles obtained with different procedures, arises from electron photo-ejection and subsequent charging and disintegration of existing gold nanoparticles into smaller size products. 相似文献
10.
N.V. Tarasenko A.V. Butsen E.A. Nevar N.A. Savastenko 《Applied Surface Science》2006,252(13):4439-4444
In this paper we report the formation of gold nanoparticles during laser ablation of gold target in water in the absence of any additives. The experiments were carried out by using the radiation of the pulsed Nd:YAG laser, operating at the second (532 nm, 10 ns, 10 Hz), or the fourth harmonic (266 nm) wavelengths. The properties of the nanoparticles were found to be susceptible to the additional 532 and 266 nm laser irradiation. It has been established that both the mean size of the nanoparticles and their stability could be varied by proper selection of the parameters of laser ablation and postirradiation such as laser fluence and wavelength combinations. 相似文献
11.
In this paper, we propose a method to generate gold nanoparticles capable of absorbing near infrared light (NIR) radiation
through a photochemical reaction. This approach does not require the use of either surfactants or polymers, reducing the difficulties
that may arise in further chemical modifications for the gold nanoparticles. The gold nanoparticles with either triangular
or hexagonal shapes were generated using the photo-reduction method, mixing hydrogen tetrachloroaurate with sodium oxalate,
a reducing agent, in aqueous solution under illumination of a mercury lamp (λmax = 306 nm) for more than 10 min. The size of the gold nanoparticles varies from 25 to 200 nm, which mainly depends on the duration
of light illumination and the concentration of sodium oxalate. Furthermore, we demonstrate that the presence of the gold nanoparticles
in aqueous solutions can effectively elevate the temperature of the solutions under irradiation of NIR light (808 nm) within
a few minutes. The gold nanoparticles can be potentially used as suitable photothermal agents for hyperthermia. 相似文献
12.
In this work, optimized size distribution and optical properties in the colloidal synthesis of gold nanoparticles (GNPs) were obtained using a proposed ultrasonic irradiation assisted Turkevich-Frens method. The effect of three nominal ultrasound (20 kHz) irradiation powers: 60, 150, and 210 W have been analyzed as size and shape control parameters. The GNPs colloidal solutions were obtained from chloroauric acid (HAuCl4) and trisodium citrate (C6H5Na3O7·2H2O) under continuous irradiation for 1 h without any additional heat or stirring. The surface plasmon resonance (SPR) was monitored in the UV–Vis spectra every 10 min to found the optimal time for localized SPR wavelength (), and the 210 sample procedure has reduced the localization at 20 min, while 150 and 60 samples have showed at 60 min. The nucleation and growth of GNPs showed changes in shape and size distribution associated with physical (cavitation, temperature) and chemical (radical generation, pH) conditions in the aqueous solution. The results showed quasi-spherical GNPs as pentakis dodecahedron ( = 560 nm), triakis icosahedron ( = 535 nm), and tetrakis hexahedron ( = 525 nm) in a size range from 12 to 16 nm. Chemical effects of ultrasound irradiation were suggested in the disproportionation process, electrons of AuCl2− are rapidly exchanged through the gold surface. After AuCl4− and Cl− were desorbed, a tetrachloroaurate complex was recycled for the two-electron reduction by citrate, aurophilic interaction between complexes AuCl2−, electrons exchange, and gold seeds, the deposition of new gold atoms on the surface promoting the growth of GNPs. These mechanisms are enhanced by the effects of ultrasound, such as cavitation and transmitted energy into the solution. These results show that the plasmonic response from the reported GNPs can be tuned using a simple methodology with minimum infrastructure requirements. Moreover, the production method could be easily scalable to meet industrial manufacturing needs. 相似文献
13.
N.N. Nedyalkov S.E. ImamovaP.A. Atanasov R.A. ToshkovaE.G. Gardeva L.S. YossifovaM.T. Alexandrov M. Obara 《Applied Surface Science》2011,257(12):5456-5459
Theoretical and experimental results on the heating process of gold nanoparticles irradiated by nanosecond laser pulses are presented. The efficiency of particle heating is demonstrated by in-vitro photothermal therapy of human tumor cells. Gold nanoparticles with diameters of 40 and 100 nm are added as colloid in the cell culture and the samples are irradiated by nanosecond pulses at wavelength of 532 nm delivered by Nd:YAG laser system. The results indicate clear cytotoxic effect of application of nanoparticle as more efficient is the case of using particles with diameter of 100 nm. The theoretical analysis of the heating process of nanoparticle interacting with laser radiation is based on the Mie scattering theory, which is used for calculation of the particle absorption coefficient, and two-dimensional heat diffusion model, which describes the particle and the surrounding medium temperature evolution. Using this model the dependence of the achieved maximal temperature in the particles on the applied laser fluence and time evolution of the particle temperature is obtained. 相似文献
14.
Principal role of substrate types on the nonlinear optical properties of Au NP was investigated. Third harmonic generation (THG) studies were carried out for Au NP deposited on the Al-doped ZnO (AuNP/AZO) and Ga-doped ZnO (AuNP/GZO) substrates at fundamental wavelength of 20 ns Er:glass laser (generating at 1540 nm wavelength) during photostimulation by the 532 nm 15 ns laser pulses. Sizes of Au NP were 5 nm, 10 nm, 20 nm, and 30 nm. The output signal was registered at 513 nm. The photoinduced power density was increased from 0 up to 800 MW/cm2. So in our work we explore the role of the substrate on the optically stimulated non-linear optical properties during simultaneous photo stimulation near the inter-band transition. The results were studied depending on the type of substrate and the sizes of the deposited nanoparticles. The analysis was done within a framework of interaction between the photoinduced light and SPR wavelengths. Control of the photoinduced temperature was done. 相似文献
15.
Cobalt/gold (Co/Au) bimetallic nanoparticles are prepared by chemically reducing gold (III) chloride to gold in the presence of pre-synthesized Co nanoparticles. Transmission electron microscopy (TEM), ultraviolet-visible (UV-vis) absorption spectrometry, and a superconducting quantum interference device (SQUID) magnetometer have been used to characterize as-prepared bimetallic nanoparticles. Our findings demonstrate Au not only grows onto Co nanoparticles, forming a surface coating, but also diffuses into Co nanoparticles. The introduction of Au alters the crystalline structure of Co nanoparticles and changes their magnetic properties. Dodecanethiols induce a reorganization of as-prepared Co/Au bimetallic nanoparticles. 相似文献
16.
The properties of Raman phonons are very important due to the fact that they can availably reflect some important physical information. An abnormal Raman peak is observed at about 558 cm-1 in In film composed of In/InOx core-shell structured nanoparticles, and the phonon mode stays very stable when the temperature changes. Our results indicate that this Raman scattering is attributed to the existence of incomplete indium oxide in the oxide shell. 相似文献
17.
Sonication-assisted layer-by-layer (LBL) deposition of gold nanoparticles (GNPs) was carried out in an attempt to prepare highly conductive gold patterns on polyimide substrates. First, sonication time was optimized with GNPs (12.8 nm) whose size was large enough to be analyzed by FE-SEM in order to evaluate the surface coverage. Next, multilayer formation (4, 8 and 12 layer) was confirmed using ethanedithiol (EDT) as linker molecules under optimized conditions by measuring their UV absorption, near-IR (NIR) transmittance, thickness, and electrical conductivity. Finally, 20-layer films using small GNPs (2.5 nm) were prepared with or without patterning, followed by sintering at 150 °C for 1 h, which provided clean gold patterns with high electrical conductivity (2.5 × 105 Ω−1 cm−1). 相似文献
18.
Panittamat Kumlangdudsana Adisorn Tuantranont Stephan Thierry Dubas Luxsana Dubas 《Superlattices and Microstructures》2012
Microelectrodes to be used in microfluidic devices were prepared from the layer-by-layer flow deposition of gold nanoparticles. Pre-designed microfluidic channels were used as templates for the flow driven deposition of the nanoparticles in sequence with poly (diallyldimethyl amonium chloride) (PDADMAC). The electrical resistivity of the gold nanoparticle assembly was found to be strongly dependant on the concentration of sodium citrate used in the gold nanoparticle synthesis. As the electrical properties of the film changed from insulating to conducting when decreasing the citrate concentration, a 4 point probe setup was used to measure the resistivity of the film. Near bulk conductivity (5.42 × 10−6 Ω cm) was achieved with only 10 layers of film. The thickness and morphology of the flow-printed multilayer microelectrode was characterized using atomic force microscopy (AFM) and a field emission scanning electron microscope (FE-SEM). To demonstrate its usefulness, the microelectrode assembly was then tested toward the detection of KCl in solution, having a concentration ranging from 1 to 20 mM using AC current detection in a simple setup. Good linearity and stability of the electrode confirmed that this method could be very convenient for the fabrication of microelectrodes for lab-on-chip applications. 相似文献
19.
Biological synthesis approach has been regarded as a green, eco-friendly and cost effective method for nanoparticles preparation without any toxic solvents and hazardous bi-products during the process. This present study reported a facile and rapid biosynthesis method for gold nanoparticles (GNPs) from Capsicum annuum var. grossum pulp extract in a single-pot process. The aqueous pulp extract was used as biotic reducing agent for gold nanoparticle growing. Various shapes (triangle, hexagonal, and quasi-spherical shapes) were observed within range of 6–37 nm. The UV–Vis spectra showed surface plasmon resonance (SPR) peak for the formed GNPs at 560 nm after 10 min incubation at room temperature. The possible influences of extract amount, gold ion concentration, incubation time, reaction temperature and solution pH were evaluated to obtain the optimized synthesis conditions. The effects of the experimental factors on NPs synthesis process were also discussed. The produced gold nanoparticles were characterized by transform electron microscopy (TEM), X-ray diffraction (XRD), energy dispersive X-ray (EDS) and Fourier Transform infrared spectroscopy (FTIR). The results demonstrated that the as-obtained GNPs were well dispersed and stable with good catalytic activity. Biomolecules in the aqueous extract were responsible for the capping and stabilization of GNPs. 相似文献
20.
Zinc peroxide nanoparticles having grain size less than 5 nm were synthesized using pulsed laser ablation in aqueous solution in the presence of different surfactants and solid zinc target in 3% H2O2. The effect of surfactants on the optical and structure of ZnO2 was studied by applying different spectroscopic techniques. Structural properties and grain size of the synthesized nanoparticles were studied using XRD method. The presence of the cubic phase of zinc peroxide in all samples was confirmed with XRD, and the grain sizes were 4.7, 3.7, 3.3 and 2.8 nm in pure H2O2, and H2O2 mixed with SDS, CTAB and OGM respectively. For optical characterization, FTIR transmittance spectra of ZnO2 nanoparticles prepared with and without surfactants show a characteristic ZnO2 absorption at 435-445 cm−1. FTIR spectrum revealed that the adsorbed surfactants on zinc peroxide disappeared in case of CTAB and OGM while it appears in case of SDS. This could be due to high critical micelles SDS concentration comparing with others which is attributed to the adsorption anionic nature of this surfactant. Both FTIR and UV-vis spectra show a red shift in the presence of SDS and blue shift in the presence of CTAB and OGM. The blue shift in the absorption edge indicates the quantum confinement property of nanoparticles. The zinc peroxide nanoparticles prepared in additives-free media was also characterized by Raman spectra which show the characteristic peaks at 830-840 and 420-440 cm−1. 相似文献