首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The magnetic and transport properties of La1−xCaxMnO3 (0≤x<0.4) have been systematically studied. The magnetoresistance (MR) maximum appears at x=0.2-0.25 and the temperature dependence of MR for x>0.25 shows a much broader profile than that of samples for x=0.2-0.25. Based on a scenario in which there is a short-range charge ordering (CO) state coexisting in the ferromagnetic state matrix for x>0.25, and the least or even no short-range CO state exists in samples for x=0.2-0.25, the above observations can be understood.  相似文献   

2.
The magnetism and transport properties of the samples LaMn1−xTixO3 (0≤x≤0.2) were investigated. All samples show a rhombohedral structure () at room temperature. The sample with x=0 undergoes the paramagnetic-ferromagnetic (PM-FM) transition accompanied by an insulator-metal (I-M) transition due to the oxygen excess. The doped samples show ferromagnetism and cluster behavior at low temperatures. Though no I-M transition associated with the PM-FM transition appears, the magnetoresistance (MR) effect was observed especially at low temperatures under the applied fields of 0.5 T. Due to the fact that the oxygen content in the Ti-doped samples is nearly stochiometry (3.01) and the Hall resistivity at room temperature is negative, the ferromagnetism in LaMn1−xTixO3 (0.05≤x≤0.2) is believed to be consistent with the Mn2+-O-Mn3+ double exchange (DE) mechanism. These results suggest that DE can be obtained by direct Mn-site doping.  相似文献   

3.
A series of polycrystalline samples of Mg1−xPbxB2 (0≤x≤0.10) were prepared by a solid state reaction method and their structure, superconducting transition temperature and transport properties were investigated by means of X-ray diffraction (XRD) and resistivity measurements. Mg1−xPbxB2 compounds were shown to adopt an isostructural AlB2-type hexagonal structure in a relatively small range of lead concentration, x≤0.01. The crystalline lattice constants were evaluated and were found to exhibit slight length compression as x increases. The superconducting transition temperature (Tc) steadily decreases with Pb doping. It is suggested that the mechanism of superconductivity reduction by lead doping can be attributed to the chemical pressure effect.  相似文献   

4.
5.
The samples with the Mn3+/Mn4+ ratio fixed at 2:1 La(2+x)/3Sr(1−x)/3Mn1−xCrxO3 (0≤x≤0.20) have been prepared. The magnetic, electrical transport, and magnetoresistance properties have been investigated. Remarkable transport and colossal magnetoresistance (CMR) effect, as well as cluster glass (CG) behaviors have been clearly observed in the samples studied. It was found that the Curie temperature Tc and insulator−metal transition temperature Tp1 are strongly affected by Cr substitution. The experiment observations are discussed by taking into account the variety of tolerance factors t; the effects of A-site radius 〈rA〉 and the A-site mismatch effect (σ2).  相似文献   

6.
Nanocrystalline La1−xBaxMnO3 (0.0≤x≤0.3) manganites have been prepared by a simple and instantaneous solution combustion method, which is a low temperature initiated synthetic route to obtain fine-grained powders with relatively high surface area. The phase purity and crystal structure of the combustion products are carried out by powder X-ray diffraction. The as-made nanopowders are in cubic phase. On calcination to 900 °C, barium doped manganites retain cubic phase, whereas barium free manganite transformed to rhombohedral phase. The scanning electron microscope (SEM) results revealed that the combustion-derived compounds are agglomerated with fine primary particles. The doped manganites have surface area in the range 24-44 m2/g. The surface area of the manganites increases with barium content, whereas it decreases on calcination. Both undoped and doped lanthanum manganites show two active IR vibrational modes at 400 and 600 cm−1. The low temperature resistivity measurements have been carried out by four-probe method down to 77 K. All the samples exhibit metal-insulator behaviour and metal-insulator transition temperature (TM-I) in the range 184-228 K and it is interesting to note that, as the barium content increases the TM-I shifts to lower temperature side. The maximum TM-I of 228 K is observed for La0.9Ba0.1MnO3 sample.  相似文献   

7.
The effect of Co doping at Mn-site on the structural, magnetic and electrical transport properties in electron-doped manganties La0.9Te0.1Mn1−xCoxO3 (0≤x≤0.25) has been investigated. The room temperature structural transition from rhombohedra to orthorhombic (Pbnm) symmetry is found in these samples with x≥0.20 by the Rietveld refinement of X-ray powder diffraction patterns. All samples undergo the paramagnetic-ferromagnetic (PM-FM) phase transition. The Curie temperature TC of these samples decreases and the transition becomes broader with increasing Co-doping level. The magnetization magnitude of Co-doping samples increases at low temperatures with increasing Co-doping level for x≤0.15 and decreases with increasing Co-doping content further. The metal-insulator (M-I) transitions observed in the sample with x=0 are completely suppressed with Co doping, and the resistivity displays semiconducting behavior within the measured temperature region for these samples with x>0. All results are discussed according to the changes of the structure parameters and magnetic exchange interaction caused by Co-doping. In addition, the different effects between the Co doping and Cu doping in the Mn site for the electron-doped manganites are also discussed.  相似文献   

8.
The dc magnetization and ac susceptibility measurements on two dimensional layered manganite La1.2Ba1.8Mn2O7 samples reveal the occurrence of ferromagnetism above room temperature with ferromagnetic (FM) to paramagnetic (PM) transitions at 338 K. The bifurcation temperatures shown by the zero-field cooled (ZFC) and field cooled (FC) dc magnetization curves at high temperatures shift towards lower temperatures as the applied field is increased from 100 to 2500 Oe. The data are suggestive of a large magnetic anisotropy due to the strong competing ferromagnetic and antiferromagnetic interactions resulting in a spin-glass-like state. Ru doping is found to enhance the ferromagnetism and metallicity of the system in a remarkable way. The magnetoresistance (MR) values obtained are very high and about 40% even at 260 K for the undoped sample.  相似文献   

9.
Magnetoresistance (MR) and magnetization (dc and ac) measurements have been carried out on the manganites, (La0.7−2xEux)(Ca0.3Srx)MnO3 (0.05≤x≤0.15), in the temperature range of 5-320 K. At 5 K, an unusually large MR of almost 98% is observed in the x=0.15 sample, nearly up to fields of 4-5 T. This large high-field MR occurs in the metallic region, far below the insulator-metal transition temperature, and does not vary linearly with applied field. The unusual magnetoresistance is explained in the light of various possibilities such as phase segregation, cluster spin-glass behavior, etc.  相似文献   

10.
The author of the comment objects to the characterization and the interpretation of magnetoresistance (MR) effects observed by us in La1−xCaxMnO3 (0≤x<0.4) samples. In this reply, arguments are used to show that the samples' characterization and explanation of the MR by considering the role of the short-charge ordering (CO) regions and magnetic domains are reasonable and acceptable.  相似文献   

11.
The effect of Te-doping at La-site on structural, magnetic and transport properties in the manganites La0.7Ca0.3−xTexMnO3 (0≤x≤0.15) has been investigated. All samples show an orthorhombic structure (O′-Pbnm) at room temperature. It shows that the Mn-O-Mn bond angle decreases and the Mn-O bond length increases with the increase in the Te content. All samples exhibit an insulator-metal (I-M) transition and the resistivity increases with the increase in the Te-doping level. Additionally, the Curie temperature Tc decreases and the transition becomes broader with increasing Te-doping level, in contrast, the magnetization of Te-doping samples at low temperatures decrease with increasing x as x≤0.10 and then increase with further increasing x to 0.15. The results are discussed in terms of Jahn-Teller (JT) vibrational anisotropy Q3/Q2 and the opening of the new DE channel between Mn2+-O-Mn3+ due to the introduction of Mn2+ ions because of the substitution of Te4+ ions for Ca2+ ions.  相似文献   

12.
The effect of Te-doping at La-site on structural, magnetic and transport properties in the manganites La0.7Sr0.3−xTexMnO3 (0≤x≤0.15) has been investigated. All samples show a rhombohedral structure with the space group . It shows that the Mn-O-Mn bond angle decreases and the Mn-O bond length increases with the increase of Te content. The Curie temperature TC decreases with increasing Te-doping level, in contrast, the magnetization magnitude of Te-doping samples at low temperatures increase with increasing x as x≤0.05 and then decrease with further increasing x to 0.15. The results are discussed in terms of the combined effects of the opening of the new double exchange (DE) channel between Mn2+-O-Mn3+ due to the introduction of Mn2+ ions because of the substitution of Te4+ for Sr2+ and the reduction of the transfer integral b due to the decrease of the Mn-O-Mn bond angle.  相似文献   

13.
The electronic structure of polycrystalline ferromagnetic Zn1−xCoxO (0.05≤x≤0.15) and the oxidation state of Co in it, have been investigated. The Co-doped polycrystalline samples are synthesized by a combustion method and are ferromagnetic at room temperature. XPS and optical absorption studies show evidence for Co2+ ions in the tetrahedral symmetry, indicating substitution of Co2+ in the ZnO lattice. However, powder XRD and electron diffraction data show the presence of Co metal in the samples. This give evidence to the fact that some Co2+ ion are incorporated in the ZnO lattice which gives changes in the electronic structure whereas ferromagnetism comes from the Co metal impurities present in the samples.  相似文献   

14.
Oxidative (δ>0) nonstoichiometry in the perovskite ‘LaMnO3+δ’ has been known to be manifested not with O interstitials but rather with cation vacancies of equal amounts at the two cation sites, La and Mn, i.e. La1−xMn1−yO3 with x=y. Here, we report the fabrication of samples with record-high cation-vacancy concentrations (x>0.12 or δ>0.4) by means of a variety of high-pressure oxygenation techniques. Linear (negative) dependence of the cell volume on x was observed within the whole x range investigated, down to 56.9 Å3 (per formula unit) for a sample oxygenated at 5 GPa and 1100 °C using Ag2O2 as an excess oxygen source. With increasing degree of cation deficiency in La1−xMn1−xO3, the ferromagnetic transition temperature was found to follow a bell shape with respect to x exhibiting a maximum of ∼250 K about x≈0.1. For moderately oxygenated samples large magnetoresistance effect was evidenced.  相似文献   

15.
Systematic studies of the structural, transport, magnetic and specific heat behavior have been performed on the perovskite molybdates SrMo1−xNixO3 (0.02≤x≤0.08). Ni doping at the Mo site does not change the structure of all samples, but increases the lattice parameter a monotonically. All of the doped samples keep their metallic behavior. The magnetic properties keep a Pauli paramagnetism in the high-temperature region, but have a ferromagnetic (FM) transition at about 50 K. The resistivity, ρ, and magnetic susceptibility, χ, increase, while the electronic specific heat coefficient, γe, decreases monotonically with the increase of Ni doping content, x. The electronic transport of all samples shows a T2 dependence in the low-temperature region and a T dependence in the high-temperature region, respectively. The temperature dependence of the specific heat can be well described by the formula Cp(T)/T=γe+βpT2 in the low-temperature range. These behaviors can be explained by the competition between the decrease in the density of states (DOS) at the Fermi level and the electron localization due to the disorder effect induced by the random distribution of Ni at the Mo site in the samples.  相似文献   

16.
The structural, superconducting and magnetic properties of La2Cu1−xZnxO4+δ (0≤x≤0.1) chemically oxidized by NaClO at room temperature were studied. All the samples before and after oxidation are single phase with orthorhombic structure, as indicated by their powder X-ray diffraction analysis. The iodometric titration results indicate that Zn-substituted La2Cu1−xZnxO4 is more favorable for the insertion of the excess oxygen, as compared to the Zn-free La2CuO4. The Tc suppression rate resulting from Zn substitution in La2Cu1−xZnxO4+δ is −12.4 K/%. The effective magnetic moment induced by the non-magnetic Zn ion is the order of one Bohr magneton, which decreases with increasing the Zn concentrations in the range examined. The latter two results are qualitatively well consistent with those obtained in La2−xSrxCu1−yZnyO4 with the Sr optimal doping. This reveals that the non-magnetic Zn ions play the same role in both of the La2Cu1−xZnxO4+δ with the excess oxygen content of about 0.1 and the La2−xSrxCu1−yZnyO4 with the Sr optimal doping.  相似文献   

17.
The structural, elastic, electronic and optical (x=0) properties of doped Sn1−xBixO2 and Sn1−xTaxO2 (0≤x≤0.75) are studied using the first-principles pseudopotential plane-wave method within the local density approximation. The independent elastic constants Cij and other elastic parameters of these compounds have been calculated for the first time. The mechanical stability of the compounds with different doping concentrations has also been studied. The electronic band structure and density of states are calculated and the effect of doping on these properties is also analyzed. It is seen that the band gap of the undoped compound narrowed with dopant concentration, which disappeared for x=0.26 for Bi doping and 0.36 for Ta doping. The materials thus become conductive oxides through the change in the electronic properties of the compound for x≤0.75, which may be useful for potential application. The calculated optical properties, e.g. dielectric function, refractive index, absorption spectrum, loss-function, reflectivity and conductivity of the undoped SnO2 in two polarization directions are compared with both previous calculations and measurements.  相似文献   

18.
We have synthesized a series of La0.7(Ca0.3−xCex)MnO3 (0≤x≤0.2) by standard solid-state reaction method. X-ray diffraction (XRD) measurement was carried out for structural studies and Rietveld refinement was done for structural analysis. The transport properties were studied using four probe technique. The temperature dependence of the resistivity was measured in the temperature range of 20 K to room temperature. It is found that all samples show a systematic variation in metal to insulator transition at transition temperature (TP) and resistivity (ρ) with the relative concentration of hole and electron doping in the system. The samples showed varying amounts of colossal magnetoresistance depending upon temperature and applied magnetic field. The magnetoresistance values as high as 72% were observed in x=0 sample.  相似文献   

19.
Ultrafine Ce1−xNdxO2−δ (x=0-0.25) powders were synthesized by self-propagating room temperature synthesis. Raman spectra were measured at room temperature in the 300-700 cm−1 spectral range. The shift and asymmetric broadening of the Raman F2g mode at about 454 cm−1 in pure and doped ceria samples could be explained with combined size and inhomogenous strain effects. Increased concentration of O2− vacancies with doping is followed by an appearance of new Raman feature at about 545 cm−1.  相似文献   

20.
Heat capacities of lithium-doped samples of CuO have been measured below room temperature by adiabatic calorimetry. The antiferromagnetic ordering transition to incommensurately modulated state was detected as a step in the heat capacity. Its concentration dependence was compatible with existing reports based on Li-NMR. The incommensurate-commensurate transition of lithium-doped copper oxide was clearly detected for the first time. The magnetic phase diagram of Cu1−xLixO was thus constructed. The suppression of both transition temperatures by the Li doping is nearly twice as strong as that expected from mean-field and percolation theories.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号