首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nanoparticles of Ni0.25Co0.25Zn0.5Fe2O4 with different particle sizes were synthesized by chemical coprecipitation technique. The prepared nanoparticles were characterized and studied by X-ray diffraction, room temperature 57Fe Mössbauer spectroscopy and DC magnetization. Increase in annealing temperature leads to inversion of cations from their normal configurations which results in an increase in the hyperfine fields at both tetrahedral A and octahedral B sites. The decrease in saturation magnetization values with an increase in annealing temperature can be attributed to the variation in proportions of superparamagnetic phase and also the redistribution of cations in these ferrite nanoparticles. Variation of coercivity with annealing temperatures can be explained in terms of the size effect.  相似文献   

2.
X-ray powder diffraction, magnetization, transport and magnetic resonance measurements of nanosize La0.7Sr0.3MnO3 (LCMO) manganites have been performed. The nanosize manganites were synthesized with a co-precipitation method at different (600, 700, 800 and 1000 °C) temperatures. The crystal structure of the nanopowders obtained was determined to be perovskite-like with a rhombohedral distortion (the space group R3¯c). The average size of synthesized nanoparticles (from 17 to 88 nm) was estimated using the X-ray diffraction and low temperature adsorption of argon methods. All the nanosize manganites show ferromagnetic-like ordering. Both the Curie temperature and magnetization decrease with reducing the particle size. The decrease of magnetization is due to the disordered surface shell of particles. The disordered surface layer is a source of the surface anisotropy and is responsible for the increase of coercivity. Temperature dependences of the magnetic resonance spectra parameters have allowed obtaining information on dynamics of magnetic properties in the nanoparticle systems. The resistivity was established to become higher by reducing the particles’ size and increases to a great extent in nanoparticles with the smallest average size at low temperatures. The magnetic entropy was shown to be smaller for the small particles. Using the temperature dependence of magnetic entropy the relative cooling power of the nanosize samples studied was evaluated.  相似文献   

3.
Nano-crystalline MnFe2−xAgxO4 (x = 0, 0.1, 0.2, 0.3 and 0.6) samples with average grain size of 4–7 nm were synthesized by a simple method based on decomposition of metal nitrates in presence of citric acid. The samples were characterized by different structural, magnetic and electrical measurements. Rietveld refinement of X-ray diffraction data confirmed cubic spinel structure of the samples. Results show that Ag doping decreases the crystallite size, magnetization and coercivity of nanoparticles. By increasing the Ag content in the samples the saturation magnetization shows interesting temperature dependent behavior. It was realized that magnetization of smaller particles show higher sensitivity to temperature variations than larger particles. DC electrical resistivity measurements in the temperature range of 300–650 K show that the resistivity first increases and then decreases by increasing the Ag content in the samples. Curie temperature (Tc) and polaron activation energy in ferromagnetic and paramagnetic regions were estimated by using resistivity curves.  相似文献   

4.
Nanosize zinc ferrite particles have been prepared for the first time using electrodeposition. Zinc and iron are deposited on the cathode from a common bath containing the salts of zinc and iron. The deposited materials were forced to undergo electrochemical oxidation in a strong alkaline solution (1 M KOH) to convert them into oxides. Crystallization in ZnFe2O4 structure was obtained by heating the deposited material at appropriate temperature. X-ray diffraction pattern confirmed that the procedure leads to the formation of pure phase of ZnFe2O4. The magnetization value for the smallest size ZnFe2O4 is much smaller than that for the ZnFe2O4 made by most of the other methods although it shows a nice hysteresis shape. The magnetization shows very little variation with size in the range studied.  相似文献   

5.
Ultrafine aluminum-substituted strontium hexaferrite particles have been prepared via citrate sol-gel route. Gels were synthesized with molar ratios [Al3+]:[Fe3+] of 0.4:11.6, 1:11, 1.5:10.5 and 2:10 and the ferrite particles were obtained by annealing the gels at 950 °C for 2 and 24 h. Electron energy dispersive X-ray spectroscopy (EDX) verified the presence of Al in the substituted samples. X-ray diffraction (XRD) confirmed the formation of the M-type hexaferrite phase in the samples with some indication of α-Fe2O3. Scanning electron microscope showed that the hexaferrite powder consists hexagonal crystals with average diameter Dav (80-186 nm) that decreases with increasing Al content and increases with increasing annealing time. Magnetic properties were determined using a pulsed-field magnetometer and a vibrating sample magnetometer (VSM). The saturation magnetization at room temperature and the Curie temperature were found to decrease while the coercivity increases with increasing the Al content. The highest coercivity of 10.1 kOe was achieved for the sample with the molar ratio [Al3+]:[Fe3+]=2:10 annealed for 24 h. The influences of the particle size, composition and impurity on the magnetic properties were discussed.  相似文献   

6.
Ni-Mn-Ga nanoparticles were prepared by ball milling technique. X-ray diffraction pattern of the milled powders has a broad peak near the location of the prominent peak for the Heusler phase of Ni2MnGa, indicating very disordered structures with small particle sizes. Structural properties of milled Ni-Mn-Ga particles recover to those of the bulk state after appropriate annealing temperature. It is worth noting that particles with size above 50 nm exhibit martensitic transformation. The average internal stress was calculated to be 2.83-1.13 MPa stored in the distorted lattice. Saturation magnetization of the milled sample increases with annealing temperature due to re-crystallization and grain growth.  相似文献   

7.
An investigation of the synthesis of Fe3O4 nanopowders by the co-precipitation method is reported from aqueous and ethanol mediums. X-ray diffraction (XRD), transmission electron microscopy (TEM) and vibrating sample magnetometer are utilized to study the effect of variation of synthesis conditions on the crystal structure, crystallite size, microstructure and magnetic properties of the formed powders. The XRD analysis showed that the crystalline Fe3O4 phase was formed at Fe3+/Fe2+ molar ratio 2.0 prepared at room temperature for 1 h at pH 10. The crystallite size was in the range between 8 and 11 nm. TEM micrographs showed that the particles appeared as nanospheres. Superparamagnetic nanoparticles with low coercivity and remanence magnetization were achieved. Heating properties of the nanosphere samples in an alternating magnetic field at 160 KHz were evaluated. An excellent heating efficiency for the sample prepared in ethanol medium is a result of more relaxation losses occurring due to its small particle size.  相似文献   

8.
The inversion degree of a series of nanocrystalline samples of CoFe2O4 ferrites has been evaluated by a combined study, which exploits the saturation magnetization at 4.2 K and 57Fe Mössbauer spectroscopy. The samples, prepared by sol-gel autocombustion, have different thermal history and particle size. The differences observed in the saturation magnetization of these samples are explained in terms of different inversion degrees, as confirmed by the analysis of the components in the Mössbauer spectra. It is notable that the inversion degrees of the samples investigated are set among the highest values reported in the literature.  相似文献   

9.
Non-stoichiometric CoxFe3???xO4/SiO2 (x = 0.8, 0.9, 1.0, 1.1) nanocomposites have been prepared by sol-gel method. The structure, morphology and magnetic properties of the obtained samples were characterized by X-ray diffraction, transmission electron microscopy, vibrating sample magnetometer and Mössbauer spectroscopy at room temperature. As the Co2?+? content increases, the average particle size of the spherical CoxFe3???xO4 in the samples decreases and the lattice constants increases. The hyperfine fields for both A- and B-site decrease, while the fraction of Co2?+? occupying the A-site increases. Magnetization measurements show the saturation magnetization and coercivity of CoxFe3???xO4/SiO2 decrease with increasing Co2?+? content. The decrease in magnetization results from the weakened A-B interactions between Fe3?+?, and the change in coercivity can be related to the variation of Co2?+? at B-site and the decreasing particle size.  相似文献   

10.
In order to better understand the relationship between LDH synthesis parameters and their particle sizes, diverse carbonate intercalated NiAl-LDH phases were prepared using different coprecipitation conditions and their structure, microstructure and morphology were characterized. The samples were synthesized by coprecipitation either at constant pH, in strong alkaline medium or using urea decomposition. The influence of a post-synthesis hydrothermal treatment was also investigated. A well crystalline NiAl-CO3 phase but containing a high stacking fault density was obtained by combining a strong basic medium and hydrothermal treatment at 120 °C for 24 h. Interestingly, the hydrothermal treatment increases the crystallinity of the samples but does not eliminate stacking faults. The crystallite sizes determined by modeling X-ray diffraction peak broadening with linear combinations of spherical harmonics are fully consistent with TEM observations confirming the validity of the approach used and indicating that the particles are probably small single crystals.  相似文献   

11.
A novel technique was used for the synthesis of manganese oxide nanocrystal by applying an external magnetic field (EMF) on the precursor solution before sonication with ultrasonic bath. The results were compared in the presence and absence of EMF. Manganese acetate solution as precursor was circulated by a pump at constant speed (7 rpm, equal to flow rate of 51.5 mL/min) in an EMF with intensity of 0.38 T in two exposure times (tMF, 2 h and 24 h). Then, the magnetized solution was irradiated indirectly by ultrasonic bath in basic and neutral media. One experiment was designed for the effect of oxygen atmosphere in the case of magnetic treated solution in neutral medium. The as prepared samples were characterized with X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, transmission electron microscopy (HRTEM, TEM), energy-dispersive spectrum (EDS), and superconducting quantum interference device (SQUID) analysis. In neutral medium, the sonication of magnetized solution (tMF, 24 h) led mainly to a mixture of Mn3O4 (hausmannite) and γ-MnOOH (manganite) and sonication of unmagnetized solution led to a pure Mn3O4. In point of particle size, the larger and smaller size of nanoparticles was obtained with and without magnetic treatment, respectively. In addition, the EMF was retarded the nucleation process, accelerated the growth of the crystal, and increased the amount of rod-like structure especially in oxygen atmosphere. In basic medium, a difference was observed on the composition of the products between magnetic treated and untreated solution. For these samples, the magnetic measurements as a function of temperature were exhibited a reduction in ferrimagnetic temperature to Tc = 39 K, and 40 K with and without magnetic treatment, respectively. The ferrimagnetic temperature was reported for the bulk at Tc = 43 K. A superparamagnetic behavior was observed at room temperature without any saturation magnetization and hysteresis in the measured field strength. The effect of EMF on the sample prepared in the basic medium was negligible but, in the case of neutral medium, the EMF affected the slope of the magnetization curves. The magnetization at room temperature was higher for the samples obtained in neutral medium without magnetic treatment. In addition, a horizontal shift loop was observed in neutral medium at low temperature.  相似文献   

12.
Collective magnetic behavior of CoFe2O4 nanoparticles with diameters of 76, 16, 15 and 8 nm, respectively, prepared by different chemical methods has been investigated. Particle composition, size and structure have been characterized by inductive coupled plasma (ICP), transmission electron microscopy (TEM) and powder X-ray diffraction (PXRD). Basic magnetic properties have been determined from the temperature dependence of magnetization and magnetization isotherms measurements. The three samples exhibit characteristic of a superparamagnetic system with the presence of strong interparticle interactions. Magnetic relaxation phenomena have been examined via frequency-dependent ac susceptibility measurements and aging and memory effect experiments. For the particles coated with oleic acid, it has been demonstrated that the sample reveals all attributes of a super-spin glass (SSG) system with strong interparticle interactions.  相似文献   

13.
Magnetic nanoparticles of nickel substituted cobalt ferrite (NixCo1−xFe2O4:0≤x≤1) have been synthesized by co-precipitation route. Particles size as estimated by the full width half maximum (FWHM) of the strongest X-ray diffraction (XRD) peak and transmission electron microscopy (TEM) techniques was found in the range 18–28±4 nm. Energy dispersive X-ray (EDX) analysis confirms the presence of Co, Ni, Fe and oxygen as well as the desired phases in the prepared nanoparticles. The selective area electron diffraction (SAED) analysis confirms the crystalline nature of the prepared nanoparticles. Data collected from the magnetization hysteresis loops of the samples show that the prepared nanoparticles are highly magnetic at room temperature. Both coercivity and saturation magnetization of the samples were found to decrease linearly with increasing Ni-concentration in cobalt ferrite. Superparamagnetic blocking temperature as determined from the zero field cooled (ZFC) magnetization curve shows a decreasing trend with increasing Ni-concentration in cobalt ferrite nanoparticles.  相似文献   

14.
Microcrystalline cellulose is a porous natural material which can be used both as a support for nanoparticles and as a reducer of metal ions. Cellulose supported nanoparticles can act as catalysts in many reactions. Cu, CuO, and Cu2O particles were prepared in microcrystalline cellulose by adding a solution of copper salt to the insoluble cellulose matrix and by reducing the copper ions with several reducers. The porous nanocomposites were studied using anomalous small angle X-ray scattering (ASAXS), X-ray absorption spectroscopy, and X-ray diffraction. Reduction of Cu2+ with cellulose in ammonium hydrate medium yielded crystalline CuO nanoparticles and the crystallite size was about 6–20 nm irrespective of the copper concentration. The size distribution of the CuO particles was determined with ASAXS measurements and coincided with the crystallite sizes. Using sodium borohydrate or hydrazine sulfate as a reducer both metallic Cu and Cu2O nanoparticles were obtained and the crystallite size and the oxidation state depended on the amount of reducer.  相似文献   

15.
Well-crystallized ultrafine ZnFe2O4 particles of several nanometers in size have been prepared by the coprecipitation method, and their particle morphology and magnetic properties, especially at low temperatures, examined. Room-temperature X-ray diffraction, transmission electron microscopy, magnetization measurements at various temperatures from 300 K to 4.2 K, and Mössbauer spectroscopy at various temperatures from 300 K to 4.2 K, and at 4.2 K with a longitudinal magnetic field of 16.4 kOe applied have been employed. The formation of short-range and long-range magnetic order in small ZnFe2O4 particles above and below approximately 30 K is discussed. Below 30 K, the appearance of spontaneous magnetization and its hysteretic property is confirmed for small ZnFe2O4 particles.  相似文献   

16.
La0.67Sr0.33FexMn1-xO3, with x = 0.0, 0.1, 0.2 and 1 have been elaborated by mechanical system. X-ray diffraction, Scanning electron microscopy, Magnetic measurements and M?ssbauer spectroscopy for the systems have been investigated. Rietveld analysis of the X-ray powder diffraction show that the samples crystallise in the orthorhombic perovskite system with Pnma space group. The average particle size of about 60 nanometre was obtained from scanning electron microscopy and X-ray diffraction. The investigated samples exhibit a ferromagnetic to paramagnetic transition with increasing temperature. The presence of manganese in the structure leads to an increase of the Curie temperature as well as to spontaneous magnetization. The magnetization versus applied magnetic field shows a small coercive field and an unsaturated magnetization which indicates that the nanoparticles of all samples are superparamagnetic at around room temperature. Room temperature M?ssbauer spectra show that the samples with x = 0.1 and x = 1.0 contain minority α-Fe2O3 and other spinel ferrite species. Also, they indicate that Fe3?+? ions are present in slightly distorted octahedral sites in the samples with x = 0.1 and 0.2, while mixed Fe valency was observed for the sample with x = 1.0.  相似文献   

17.
Spinel ferrite NiFe2O4 nanoparticles (?25 nm) in SiO2 matrix were prepared by sol–gel method. The phase and average crystallite size of the samples were determined by X-ray diffraction method and the particle size distributions were studied by a transmission electron microscope. Magnetic properties of the samples were investigated with different ferrite particle sizes and at various temperatures down to 10 K. Superparamagnetic properties were observed at room temperature when the particle size is less than 10 nm.In superparamagnetic state, the field dependence of magnetization follows Langevin function which was originally developed for paramagnetism. The effective anisotropy constant Keff is found to increase significantly with the decrease in particle volume and an order of magnitude higher than that of the bulk samples when the particle size is below 5 nm due to the dominance of surface anisotropy. In case of nanosized systems, the effect of size reduction on the law of approach to saturation has also been studied in detail.  相似文献   

18.
100 MeV Si+7 irradiation induced modifications in the structural and magnetic properties of Mg0.95Mn0.05Fe2O4 nanoparticles have been studied by using X-ray diffraction, Mössbauer spectroscopy and a SQUID magnetometer. The X-ray diffraction patterns indicate the presence of single-phase cubic spinel structure of the samples. The particle size was estimated from the broadened (311) X-ray diffraction peak using the well-known Scherrer equation. The milling process reduced the average particle size to the nanometer range. After irradiation a slight increase in the particle size was observed. With the room temperature Mössbauer spectroscopy, superparamagnetic relaxation effects were observed in the pristine as well as in the irradiated samples. No appreciable changes were observed in the room temperature Mössbauer spectra after ion irradiation. Mössbauer spectroscopy performed on a 12 h milled pristine sample (6 nm) confirmed the transition to a magnetically ordered state for temperatures less than 140 K. All the samples showed well-defined magnetic ordering at 5 K, whereas, at room temperature they were in a superparamagnetic state. From the magnetization studies performed on the irradiated samples, it was concluded that the saturation magnetization was enhanced. This was explained on the basis of SHI irradiation induced modifications in surface states of the nanoparticles.  相似文献   

19.
BaFe12O19 fine particles were synthesized after milling a precursor obtained as an intermediate in the sol–gel method. The samples were analyzed by X-ray diffraction, scanning electron microscopy and vibrating sample magnetometry. The milling process favors the formation of the BaM phase and therefore, provides a better specific magnetization and smaller grain size compared to the same preparation route but without the milling step. We report the magnetic and structural properties of the ferrite samples obtained from milled and non-milled precursors.  相似文献   

20.
《Current Applied Physics》2010,10(3):821-824
We have studied the effect of thickness on the structural, magnetic and electrical properties of La0.7Ca0.3MnO3 thin films prepared by pulsed laser deposition method using X-ray diffraction, electrical transport, magneto-transport and dc magnetization. X-ray diffraction pattern reflects that all films have c-axis epitaxial growth on LaAlO3 substrate. The decrease in out-of-plane cell parameter specifies a progressive relaxation of in the plane compressive strain as the film thickness is increases. From the dc magnetization measurements, it is observed that ferromagnetic to paramagnetic transition temperature increases with increase in the film thickness. Magneto-resistance and temperature coefficient of resistance increases with film thickness and have maximum value near its metal to insulator transition temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号