首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have studied hydrogen adsorption on the Ge(1 1 1) c(2 × 8) surface using scanning tunneling microscopy (STM) and angle-resolved photoelectron spectroscopy (ARPES). We find that atomic hydrogen preferentially adsorbs on rest atom sites. The neighbouring adatoms appear higher in STM images, which clearly indicates a charge transfer from the rest atom states to the adatom states. The surface states near the Fermi-level have been followed by ARPES as function of H exposure. Initially, there is strong emission from the rest atom states but no emission at the Fermi-level which confirms the semiconducting character of the c(2 × 8) surface. With increasing H exposure a structure develops in the close vicinity of the Fermi-level. The energy position clearly indicates a metallic character of the H-adsorbed surface. Since the only change in the STM images is the increased brightness of the adatoms neighbouring a H-terminated rest atom, we identify the emission at the Fermi-level with these adatom states.  相似文献   

2.
Adsorption of Na on the Ge(0 0 1) surface is known to be a cause of surface reconstruction. It is expected to find one Na atom per unit cell of the reconstructed surface, however, the precise atomic configuration of this system is still a matter of controversy. Consequently, the aim of our present theoretical study is to examine the atomic structure of stable p(3 × 2)/Na/Ge(0 0 1) surfaces with and without the possible change of the number of Ge atoms in the surface layer (so-called mass transport). Structural and electronic properties of the considered system are investigated using the local-orbital density functional method. Our considerations are completed by a simulation of STM images of the structures following from molecular dynamics calculations.  相似文献   

3.
The adsorption of germanium on Ag(1 1 0) has been investigated by scanning tunnelling microscopy (STM), as well as surface X-ray diffraction (SXRD). At 0.5 germanium monolayer (ML) coverage, Low Energy Electron Diffraction (LEED) patterns reveals a sharp c(4 × 2) superstructure. Based on STM images and SXRD measurements, we present an atomic model of the surface structure with Ge atoms forming tetramer nano-clusters perfectly assembled in a two-dimensional array over the silver top layer. The adsorption of the germanium atoms induces a weak perturbation of the Ag surface. Upon comparison with results obtained on the (1 1 1) and (1 0 0) faces, we stress the role played by the relative interactions between silver and germanium on the observed surface structures.  相似文献   

4.
The oxidation of the W(1 0 0) surface at elevated temperatures has been studied using room temperature STM and LEED. High exposure of the clean surface to O2 at 1500 K followed by flash-annealing to 2300 K in UHV results in the formation of a novel p(3 × 1) reconstruction, which is imaged by STM as a missing-row structure on the surface. Upon further annealing in UHV, this surface develops a floreted LEED pattern characteristic of twinned microdomains of monoclinic WOx, while maintaining the p(3 × 1) missing-row structure. Atomically resolved STM images of this surface show a complex domain structure with single and double W〈0 1 0〉 rows coexisting on the surface in different domains.  相似文献   

5.
6.
By scanning tunneling microscopy and spectroscopy (STM/S) and high-resolution core-level photoemission using synchrotron radiation, we have investigated the atomic structure and electronic properties of Sb-induced 2 × 1 reconstruction on Ge(1 1 1). Our results support well the zigzag-chain model proposed for this phase in the literature; in particular, the STM images visualize the Sb zigzag (Seiwatz) chain in a real space, and the STS I-V spectrum suggests this surface to be semiconducting, in good agreement with the atomic configuration proposed. However, a closer inspection of the STM results does not support the buckling of Sb chains reported in earlier studies. Moreover, the analysis of the Sb 4d core-level line shape of the (2 × 1) reconstruction shows that the bonding state of the Sb atoms is very similar, suggesting an unbuckled Seiwatz chain. In addition, the Ge 3d core-level emission reveals only one component, giving evidence for the ideal bulk-terminated structure of the Ge substrate.  相似文献   

7.
M. Wen 《Surface science》2009,603(1):216-220
The atomic positions of the oxygen-induced c(2 × 2)-O, (3 × 1)-O and (4 × 1)-O surface structures on Nb(1 0 0) are determined by first-principles electronic structure calculations within the density functional theory comparing experimentally observed scanning tunneling microscopy (STM) images. STM images of these surfaces are calculated on the basis of the theory of Tersoff and Hamann. The theoretical and experimental STM images of the oxygen-chemisorbed c(2 × 2)-O structural model agree well. However, only the oxide-covered (3 × 1)-O and (4 × 1)-O structural models with two layers of NbO and contraction of the unit length along longitudinal 〈1 0 0〉 direction by 10% result in the theoretical STM images that agree with the experimental ones.  相似文献   

8.
The atomic structure and charge transfer on the Ge (1 0 5) surface formed on Si substrates are studied using scanning tunneling microscopy and spectroscopy (STM and STS). The bias-dependent STM images of the whole Ge (1 0 5) facets formed on a Ge “hut” structure on Si (0 0 1) are observed, which are well explained by the recently confirmed structure model. The local surface density of states on the Ge (1 0 5) surface is measured by STS. The localization of the electronic states expected from charge transfer mechanism is observed in the dI/dV spectra. The surface band gap is estimated as 0.8-0.9 eV, which is even wider than the bulk bandgap of Ge, indicating the strong charge transfer effect to make the dangling bonds stable. The shape of normalized tunnel conductance agrees with the theoretical band structure published recently by Hashimoto et al.  相似文献   

9.
A layer of iodine at Ge(0 0 1) surface develops an ordered structure of iodine atoms bound to Ge dimers. Here are discussed atomic structures of Ge(0 0 1) surface covered by 0.25 monolayer of iodine. The p(2×4), p(2×2), c(2×4) and p(1×4) surface structures are found in calculations. The structure with two iodine atoms of the dissociated I2 molecule adsorbed at both ends of the same germanium dimer is found to be energetically favourable over iodine adsorption at neighbouring dimers. Simulated STM images of the obtained surface structures are presented and compared with experimental data.  相似文献   

10.
Density functional theory (DFT) with LDA and GGA have been employed to study the interface and thin film properties of NaCl on a Ge(0 0 1) surface. The atomic and electronic structures of thin NaCl films from one to ten monolayers were analyzed. The layer adsorption energies show that a quasi-crystalline (0 0 1) fcc NaCl film is built up via a layer-by-layer growth mode with NaCl thickness above 2 ML. Simulated STM images show a well-resolved (1 × 1) NaCl atomic structure for sample bias voltage Vs < −2.5 V and the bright protrusions should be assigned to the Cl ions of the NaCl film. The Ge substrate dimer is reserved and buckled like a clean Ge(0 0 1)-p(2 × 2) surface as the result of weak interface interaction between the dangling bonds coming from valence π states of the Ge substrate and the 3p states of the interfacial Cl ion. These results are consistent with the experiments of STM, LEED and EELS.  相似文献   

11.
Scanning tunneling microscopy (STM) has been used to study the various possible structures of adsorbed Bi on the Cu(1 0 0) surface, after equilibration at a temperature of 520 K. All of the structures previously identified by X-ray diffraction (lattice gas, c(2 × 2), c(9√2 × √2)R45°, and p(10 × 10), in order of increasing Bi-coverage) were found to be present on a single sample produced by diffusing Bi onto the Cu(1 0 0) surface from a 3-d source. By investigating the possible coexistence of various pairs of phases, it was demonstrated that the c(2 × 2) phase transforms to the c(9√2 × √2)R45° phase by a first order transition, whereas the transition from c(9√2 × √2)R45° to p(10 × 10) is continuous. In addition, the structure of surface steps was studied as a function of Bi-coverage. The results showed that the presence of Bi changes the nature of the step-step interactions at the Cu(1 0 0) surface from repulsive to attractive. The attractive step-step interactions transform any small deviations from the nominal (1 0 0) orientation of the Cu substrate into (3 1 0) microfacets. When compared with the known equilibrium crystal shape (ECS) of Bi-saturated Cu, the observed microfaceting may imply that the ECS of Cu-Bi alloys is temperature dependent.  相似文献   

12.
Sodium adsorbed on the Ge(0 0 1) surface causes reconstruction of the surface with the type of reconstruction depending on the amount of the adsorbate. We present theoretical investigations of the structure and electronic properties of Na-adsorbed Ge(0 0 1) for the coverage of 0.5 monolayer using the combination of two methods: a plane-wave basis method and a local-orbital minimal-basis method. Two possible minimum-total-energy atomic configurations have been found, namely, the Na/Ge(0 0 1)-p(2 ×1) and Na/Ge(0 0 1)-p(4 × 1) reconstructions. The surface electronic structure for all calculated configurations occurs to be metallic. Our investigations are completed by a simulation of STM images for the obtained atomic structures.  相似文献   

13.
We have studied Si(0 0 1)-Ga surface structures formed at Ga coverages of slightly above 0.50 monolayer (ML) at 250 °C by scanning tunneling microscopy (STM). 4 × 2-, 5 × 2-, and 6 × 2-Ga structures were observed in a local area on the surface. The 4 × 2-Ga structure consists of three protrusions, as observed in filled- and empty-state STM images. The characters of these structures are clearly different from those of other Si(0 0 1)-Ga structures. We also performed an ab initio calculation of the energetics for several possible models for the 4 × 2-Ga structure, and clarified that the three-orthogonal-Ga-dimer model is the most stable. Also, the results of comparing the simulated STM images and observation images at various bias voltages indicate that this structural model is the most favorable.  相似文献   

14.
We have investigated surface structures formed by deposition of 0.2 and 0.5-ML Ge on Pt(1 0 0) by using scanning tunneling microscopy (STM) and low electron energy diffraction (LEED). In addition, their temperature dependence and reactivity to CO have been studied. We observed the formation of disordered domains for Ge adatom coverages below 0.25-ML and complete c(2 × 2) structures at 0.25 to 0.5-ML Ge after annealing at 600-1200 K. Deposition of 0.2-ML Ge on a clean, hexagonally reconstructed (5 × 20)-Pt(1 0 0) substrate at 400 K lifts the reconstruction and ejects excess Pt atoms from the first layer into the adlayer. After annealing this surface to 600 K, the deposited Ge formed Ge adatoms on flat terraces and on round Pt adislands with incomplete c(2 × 2) structures, in addition to the presence of clean (1 × 1)-Pt(1 0 0) domains that were several nanometers across. Some domains of the unreconstructed (5 × 20)-Pt(1 0 0) surface still remained. After the deposition of 0.5-ML Ge and annealing at 600 K, disordered Ge domains disappeared and a c(2 × 2) Ge overlayer was produced all over the surface. Square terraces with square domains of the clean (1 × 1)-Pt(1 0 0) surface extended for nanometers. Annealing this surface to 900 K produced disordered Ge domains, and this was associated with an increase in Ge vacancies. When surfaces with 0.2-ML Ge were heated to 900 or 1200 K, or when a surface with 0.5-ML Ge was heated to 1200 K, larger domains of (5 × 20)-Pt(1 0 0) were formed with the agglomeration of disordered Ge adatoms. Pt clusters were observed in the Ge domains, and we consider these to be composed of those excess Pt atoms formed by lifting the reconstruction of the (5 × 20)-Pt(1 0 0) surface upon Ge agglomeration during cooling. A paper published elsewhere [T. Matsumoto, C. Ho, M. Batzill, B.E. Koel, Physical Review B, submitted for publication.] describes Na+-ion scattering spectroscopy (Na+-ISS) and X-ray photoelectron diffraction (XPD) experiments that distinguish between Ge present in an overlayer from incorporation into the top Pt layer to form a surface alloy for the surface structures reported here. Furthermore, these investigations revealed that disordered Ge adatoms observed herein might be associated with incomplete c(2 × 2) structures. Therefore, our observations of the formation of complete and incomplete domains of c(2 × 2) Ge adatoms indicate that interactions between Ge adatoms are repulsive at nearest neighbor distances and attractive at second-nearest neighbor distances. Regarding the reactivity of these surfaces, CO does not chemisorb on a Pt(1 0 0) surface with a c(2 × 2)-Ge overlayer and no measurable CO uptake was observed under UHV conditions at 220 K.  相似文献   

15.
The initial Ge growth stages on a (√3 × √3)R30°-reconstructed SiC(0 0 0 1) surface (√3) have been studied using a complete set of surface techniques such as reflection high energy electron diffraction (RHEED), low energy electron diffraction (LEED), atomic force microscopy (AFM) and photoemission and compared with similar Si surface enrichments in place of Ge. The investigations essentially focus on the wetting growth-regimes that are favoured by the use of the √3 surface as a starting substrate, this surface being the closest to a smooth and ideally truncated Si-terminated face of hexagonal SiC(0 0 0 1). Depending on temperature and Ge or Si coverages, varying surface organizations are obtained. They range from unorganized layer by layer growths to relaxed Ge(1 1 1) or Si(1 1 1) island growths, through intermediate attempts of coherent and strained Ge or Si surface layers, characterized by 4 × 4 and 3 × 3 surface reconstructions, respectively. RHEED intensity oscillation recordings, as a function of Ge or Si deposited amounts, have been particularly helpful to pinpoint the limited (by the high lattice mismatch) existence domains of these interesting coherent phases, either in terms of formation temperature or surface coverages. Prominently comparable data for these two Ge- and Si-related reconstructions allow us to propose an atomic model for the still unexplained Ge-4 × 4 one. It is based on a same local organization in trimer and ad-atom units for the Ge excess as admitted for the Si-excess of the 3 × 3 surface, the higher strain nevertheless favouring arrangements, for the Ge-units, in 4 × 4 arrays instead of 3 × 3 Si ones. Admitting such models, 1.25 and 1.44 monolayers of Ge and Si, should, respectively, be able to lie coherently on SiC, with respective lattice mismatches near 30% and 25%. The experimental RHEED-oscillations values are compatible with such theoretical ones. Moreover, these RHEED coverage determinations (for layer completion, for instance) inform us in turn about the initial Si richness of the starting √3 reconstruction and help us to discriminate between earlier contradictory atomic models proposed in the literature.  相似文献   

16.
Reflection high-energy electron diffraction (RHEED), reflectance difference spectroscopy (RDS), and scanning tunneling microscopy (STM) have been used to study the anisotropic kinetics on the growing Ge(0 0 1) surface. While switching of dimer direction in alternate (2 × 1)/(1 × 2) layers causes the bilayer-period oscillations in RD response, RHEED oscillations are governed by variations in surface step densities. We show that the RHEED oscillations are strongly affected by the growth front morphology: when the growth front becomes distributed over several layers, the transition from bilayer- to monolayer-period occurs in RHEED oscillations.  相似文献   

17.
The temperature-induced structural transition of the Si(1 1 3) surface is investigated by ab initio calculations. In this study, it is found that the room-temperature phase and the high-temperature phase have the 3 × 2 interstitial structure and the 3 × 1 interstitial structure, respectively. The existence of the 3 × 2 and 3 × 1 interstitial structures is supported by the analysis of scanning tunneling microscopy (STM) images and the calculation of surface core level shifts using final state pseudopotential theory. The theoretical STM images of interstitial structures are in good agreement with the STM images suggested by experiments. The analysis of STM images provides an insight into the characteristics of domain boundaries observed frequently in experiments. It is also found that the domain boundary can be formed by local 3 × 1 interstitial structures on the 3 × 2 interstitial surface. The theoretical analysis of the surface core level shifts reveals that the surface core levels in experiment originate from the interstitial structures. The lowest values in the surface core level shifts are found to be associated with the 2p core level shifts of the interstitial atoms.  相似文献   

18.
Ba-induced quasi-one-dimensional reconstructions of the Si(1 1 1) surface have been investigated by low energy electron diffraction (LEED) and scanning tunneling microscopy (STM). While the 3 × ‘2’ surface shows double-periodicity along the stripes in STM images consistent with half-order streaks observed in LEED patterns, no sign of the double-periodicity along the chain direction was detected for the 5 × 1 surface. The 5× stripes in STM images show internal structures with multiple rows. The two rows comprising the boundaries of a 5× stripe in the filled-state STM image are found to have 3a × √3/2 spacing across the stripe. The observation of the successive 3× and 2× spacings between the boundary rows supports a structural model proposed for the Ba-induced 5 × 1 Si reconstruction composed of honeycomb chains and Seiwatz chains. The highest coverage 2 × 8 surface does not reveal a quasi-1D row structure in STM images.  相似文献   

19.
We report on the fabrication of single phase of the Si(1 1 1)-(√31 × √31)-In reconstruction surface, observed by scanning tunneling microscopy (STM) at room temperature. By depositing specific amounts of indium atoms while heating the Si(1 1 1)-(7 × 7) substrate at a critical temperature, the single phase of Si(1 1 1)-(√31 × √31)-In surfaces could be routinely obtained over the whole surface with large domains. This procedure is certified by our high-resolution STM images in the range of 5-700 nm. Besides, the high resolution STM images of the Si(1 1 1)-(√31 × √31)-In surface were also presented.  相似文献   

20.
The atomic and electronic structures of the Si(0 0 1)-c(4 × 4) surface have been studied by scanning tunneling microscopy (STM) and density functional theory (DFT). To explain the experimental bias dependent STM observations, a modified mixed ad-dimer reconstruction model is introduced. The model involves three tilted Si dimers and a carbon atom incorporated into the third subsurface layer per c(4 × 4) unit cell. The calculated STM images show a close resemblance to the experimental ones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号