首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The specific heat (C) of bi-layered manganites La2−2xSr1+2xMn2O7 (x=0.3 and 0.5) is investigated for the ground state of low temperature excitations. A T3/2 dependent term in the low temperature specific heat (LTSH) is identified at zero magnetic field and suppressed by magnetic fields for x=0.3 sample, which is consistent with a ferromagnetic metallic ground state. For x=0.5 sample, a T2 term is observed and is consistent with a two-dimensional (2D) antiferromagnetic insulator. However, it is almost independent of magnetic field within the range of measured temperature (0.6-10 K) and magnetic field (6 T).  相似文献   

2.
Polycrystalline Sn1−xMnxO2 (0≤x≤0.05) diluted magnetic semiconductors were prepared by solid-state reaction method and their structural and magnetic properties had been investigated systematically. The three Mn-doped samples (x=0.01, 0.03, 0.05) undergo paramagnetic to ferromagnetic phase transitions upon cooling, but their Curie temperatures are far lower than room temperature. The magnetization cannot be attributed to any identified impurity phase. It is also found that the magnetization increases with increasing Mn doping, while the ratio of the Mn ions contributing to ferromagnetic ordering to the total Mn ions decreases.  相似文献   

3.
We report electron-spin resonance (ESR) measurements in polycrystalline samples of (Gd1−xYx)2PdSi3. We observe the onset of a broadening of the linewidth and of a decrease of the resonance field at approximately twice the Néel temperature in the paramagnetic state. This characteristic temperature coincides with the electrical resistivity minimum. The high-temperature behavior of the linewidth is governed by a strong bottleneck effect.  相似文献   

4.
Metastable ferromagnetic phases, for different compositions in La2MnCo1−xNixO6, are obtained for samples synthesized by a low-temperature method and annealed in air at different temperatures in the range 200-1350 °C. The Tcs of the ferromagnetic phases vary linearly between those of the phases of the end members. Tcs of the different phases of La2MnCo1−xNixO6 can be predicted based on the Tcs and spin states of Mn, Co and Ni in the different phases of the end members, La2MnCoO6 and La2MnNiO6.  相似文献   

5.
We report the results of our investigation in CeNi2−xCuxSn2 (x=0, 0.4, 1.0, 1.6 and 2.0), a new pseudoternary series with CaBe2Ge2-type tetragonal structure. Substitution of Cu for Ni leads to a linear increase in the constants a, c and the unit cell volume v. As probed by the low temperature dependence of ac susceptibility χac(T), the Tf temperature, which corresponds to the freezing temperature of the spin-glass clusters, is annihilated above 2.0 K significantly for the samples with x≥1.6. This observation proves conclusively that the Ni-rich samples in the series CeNi2−xCuxSn2 have the advantage of forming the spin-glass-like state.  相似文献   

6.
The correlated function expansion (CFE) interpolation procedure was presented to efficiently estimate principal energy band gaps and lattice constants of the quaternary alloy AlxGa1−xSbyAs1−y over the entire composition variable space. The lattice matching conditions between x and y for the alloy AlxGa1−xSbyAs1−y substrated to InAs and GaSb were obtained by optimizing the alloy lattice constant to that of the substrates. The corresponding principal band gaps (E(Γ), E(L), and E(X)) were also calculated along the lattice matching condition on each substrate (InAs and GaSb).  相似文献   

7.
The structure and magnetic properties of La1−xTbxMn2Si2 (0≤x≤0.3) were studied by X-ray powder diffraction and DC magnetization measurements. All the compounds crystallize in ThCr2Si2-type structure. Substitution of Tb for La led to a linear decrease in the lattice constants and the unit-cell volume. A ferromagnetic phase for x≤0.15, and an antiferromagnetic phase for x=0.3 have been observed at about room temperature, whereas the compounds with x=0.2 and 0.25 exhibit a magnetic phase transition from ferromagnetism to antiferromagnetism.  相似文献   

8.
Mixed thin films of (CdO)1−x(PbO)x and (CdS)1−x(PbS)x (x=0.25) were prepared on glass substrates by spray pyrolysis technique for various substrate temperatures 300, 320 and 340 °C. Structural and optical properties were studied. XRD studies reveal the formation of mixed films. The substrate temperature of 340 °C seems to be critical for the formation of CdO-PbO mixed films. It is observed that (CdS)1−x(PbS)x mixed films were formed at all the three substrate temperatures. The direct band gap value of (CdO)1−x(PbO)x and (CdS)1−x(PbS)x mixed films is about 2.6 and 2.37 eV, respectively.  相似文献   

9.
Series of CoxCr1−x thin films have been evaporated under vacuum onto Si(1 0 0) and glass substrates. Thickness ranges from 17 to 220 nm, and x from 0.80 to 0.88. Alternating gradient field magnetometer (AGFM) measurements provided saturation magnetization values ranging from 220 to 1200 emu/cm3. Values of squareness exceeding 0.8 have been measured. Coercive field may reach values up to 700 Oe, depending on the percentage of chromium, as well as the substrate nature and the direction of the applied magnetic field. The saturation magnetization value decreases as the Cr content increases. In order to study their dynamical magnetic properties, Brillouin Light Scattering (BLS) measurements have been performed on these samples. Stiffness constant value and anisotropy magnetic field were adjusted to fit the experimental BLS spectra. These results are analyzed and correlated.  相似文献   

10.
The Hall resistivity and magnetization have been investigated in the ferromagnetic state of the bilayered manganite La2−2xSr1+2xMn2O7 (x=0.36). The Hall resistivity shows an increase in both the ordinary and anomalous Hall coefficients at low temperatures below 50 K, a region in which experimental evidence for the spin glass state has been found in a low magnetic field of 1 mT. The origin of the anomalous behavior of the Hall resistivity relevant to magnetic states may lie in the intrinsic microscopic inhomogeneity in a quasi-two-dimensional electron system.  相似文献   

11.
The electronic structure of polycrystalline ferromagnetic Zn1−xCoxO (0.05≤x≤0.15) and the oxidation state of Co in it, have been investigated. The Co-doped polycrystalline samples are synthesized by a combustion method and are ferromagnetic at room temperature. XPS and optical absorption studies show evidence for Co2+ ions in the tetrahedral symmetry, indicating substitution of Co2+ in the ZnO lattice. However, powder XRD and electron diffraction data show the presence of Co metal in the samples. This give evidence to the fact that some Co2+ ion are incorporated in the ZnO lattice which gives changes in the electronic structure whereas ferromagnetism comes from the Co metal impurities present in the samples.  相似文献   

12.
(Na1−xKx)0.5Bi0.5TiO3 (NKBT) (x = 0.1, 0.2, and 0.3) thin films with good surface morphology and rhombohedral perovskite structure were fabricated on quartz substrates by a sol-gel process. The fundamental optical constants (the band gaps, linear refractive indices and absorption coefficients) of the films were obtained through optical transmittance measurements. The nonlinear optical properties were investigated by Z-scan technique performed at 532 nm with a picosecond laser. A two-photon absorption effect closely related with potassium-doping content was found in thin films, and the nonlinear refractive index n2 increases evidently with potassium-doping. The real part of the third-order nonlinear susceptibility χ(3) is much larger than its imaginary part, indicating that the third-order optical nonlinear response of the NKBT films is dominated by the optical nonlinear refractive behavior. These results show that NKBT thin films have potential applications in nonlinear optics.  相似文献   

13.
Measurements of electrical resistivity are presented for polycrystalline alloys in the CePt2(Si1−xSnx)2 system. Results of X-ray diffraction indicate that the tetragonal region of the CePt2(Si1−xSnx)2 alloy system that is amenable for study only extends up to x=0.3. The resistivity maximum characteristic of a Kondo lattice is observed at a temperature Tmax=63 K for the parent compound CePt2Si2 and shifts to lower temperatures with increase in Sn content. The compressible Kondo lattice model is applied to describe the results of Tmax in terms of the on-site Kondo exchange interaction J and the electron density of states at the Fermi level N(EF). A value of |JN(EF)|=0.060±0.009 for the parent compound is obtained from the experimental results.  相似文献   

14.
Magnetoresistance (MR) and magnetization (dc and ac) measurements have been carried out on the manganites, (La0.7−2xEux)(Ca0.3Srx)MnO3 (0.05≤x≤0.15), in the temperature range of 5-320 K. At 5 K, an unusually large MR of almost 98% is observed in the x=0.15 sample, nearly up to fields of 4-5 T. This large high-field MR occurs in the metallic region, far below the insulator-metal transition temperature, and does not vary linearly with applied field. The unusual magnetoresistance is explained in the light of various possibilities such as phase segregation, cluster spin-glass behavior, etc.  相似文献   

15.
Hydrogenated amorphous SiC films (a-Si1−xCx:H) were prepared by dc magnetron sputtering technique on p-type Si(1 0 0) and corning 9075 substrates at low temperature, by using 32 sprigs of silicon carbide (6H-SiC). The deposited a-Si1−xCx:H film was realized under a mixture of argon and hydrogen gases. The a-Si1−xCx:H films have been investigated by scanning electronic microscopy equipped with an EDS system (SEM-EDS), X-ray diffraction (XRD), secondary ions mass spectrometry (SIMS), Fourier transform infrared spectroscopy (FTIR), UV-vis-IR spectrophotometry, and photoluminescence (PL). XRD results showed that the deposited film was amorphous with a structure as a-Si0.80C0.20:H corresponding to 20 at.% carbon. The photoluminescence response of the samples was observed in the visible range at room temperature with two peaks centred at 463 nm (2.68 eV) and 542 nm (2.29 eV). In addition, the dependence of photoluminescence behaviour on film thickness for a certain carbon composition in hydrogenated amorphous SiC films (a-Si1−xCx:H) has been investigated.  相似文献   

16.
The structure, transport and magnetic properties of (La0.8Sr0.2)1−xMnO3 (0≤x≤0.30) polycrystalline perovskite manganites have been investigated. For all the samples the Curie temperatures, Tc, remain nearly unchanged (329±3 K). Resistivity versus temperature curves for the samples show a double-peak behavior. A significant magnetoresistance (MR) effect and different temperature dependences of the MR ratios of the samples are observed. The shapes of the MR-T curves of the samples can be adjusted by changing x. For the x=0.30 sample, a nearly constant MR ratio of (9.5±0.5)% is obtained over the temperature range from 205 to 328 K.  相似文献   

17.
Composite samples (1−x)La0.7Ca0.2Sr0.1MnO3(LCSMO)+x(ZnO) with different ZnO doping levels x have been investigated systematically. The structure and morphology of the composites have been studied by the X-ray diffraction (XRD) and scanning electronic microscopy (SEM). The XRD and SEM results indicate that no reaction occurs between LCSMO and ZnO grains, and that ZnO segregates mostly at the grain boundaries of LCSMO. The magnetic properties reveal that the ferromagnetic order of LCSMO is weakened by addition of ZnO. The results also show that ZnO has a direct effect on the resistance of LCSMO/ZnO composites, especially on the low-temperature resistance. With increase of the ZnO doping level, TP shifts to a lower temperature and the resistance increases. It is interesting to note that an enhanced magnetoresisitance (MR) effect for the composites is found over a wide temperature range from low temperature to room temperature in an applied magnetic field of 3 kOe. The maximum MR appears at x=0.1. The low field magnetoresistance (LFMR) results from spin-polarized tunneling. However, around room temperature, the enhanced MR of the composites is caused by magnetic disorder.  相似文献   

18.
19.
Ultrafine Ce1−xNdxO2−δ (x=0-0.25) powders were synthesized by self-propagating room temperature synthesis. Raman spectra were measured at room temperature in the 300-700 cm−1 spectral range. The shift and asymmetric broadening of the Raman F2g mode at about 454 cm−1 in pure and doped ceria samples could be explained with combined size and inhomogenous strain effects. Increased concentration of O2− vacancies with doping is followed by an appearance of new Raman feature at about 545 cm−1.  相似文献   

20.
The magnetic and transport properties of a new cubic KSbO3-type ruthenate, (Ba1−xSrx)2Ru3O9 (x≈0.35), have been investigated. The crystal structure has a singular geometry in which ruthenium atoms form an ideal three-dimensional orthogonal dimer lattice. The magnetic susceptibility is Pauli-paramagnetic but exhibits an anomalous temperature dependence reminiscent of a gap-like behavior. The resistivity exhibits a metallic behavior, except for a rise at low temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号