首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bharat Medasani 《Surface science》2009,603(13):2042-8970
We calculate the surface energy, surface stress, and lattice contraction of Al nanoparticles using ab initio density functional and empirical computational techniques. Ab initio calculations are carried out using the siesta pseudopotential method combined with the generalized gradient approximation. Empirical calculations are conducted using the embedded atom method. The ab initio density functional approach predicts the surface energies of Al nanoclusters to be in the range of 0.9-2.0 J/m2. These values are consistent with the surface energy of bulk aluminum and are close to the surface energies of silver nanoparticles calculated in our previous study. In contrast to our previous results for Ag nanoparticles, we found a significant discrepancy between the theoretical values of surface energy and stress for Al nanoclusters. This result could be explained by a greater degree of surface reconstruction in Al clusters than in Ag clusters.  相似文献   

2.
Auger electron spectroscopy (AES) and low energy electron diffraction (LEED) were used to study the first steps of growth and oxidation of aluminum on Ag(1 1 1) substrate. We find that the growth of aluminum at room temperature (RT) shows the formation of a complete monolayer (ML) in epitaxy with the substrate. After deposition at RT of one aluminum ML, the dissolution kinetics is recorded at 200 °C and the bulk diffusion coefficient is deduced. We also show that the oxidation at RT of one aluminum ML is very rapid, and that both aluminum and oxygen do not dissolve in silver up to 500 °C. From the AES intensities variations, we deduce the composition profile of the oxide layer which corresponds probably to the stacking …/Ag/Ag/Al/O.  相似文献   

3.
The geometric and electronic structures occuring during the growth of Al on a single crystal Ag(111) surface have been studied using a combination of low energy electron diffraction (LEED), Auger electron spectroscopy (AES), energy loss spectroscopy (ELS) and work function measurements. The Auger signal versus deposition time plots, which were used to monitor the growth mode, are shown to behave in an identical fashion to that expected for layer-by-layer (Frank-van der Merwe) growth. LEED was used to determine the lateral periodicity of thin Al films and shows that Al forms, at very small coverages, 2D islands which have the same structure as the Ag(111) substrate and which grow together to form the first monolayer. At substrate temperatures of 150 K a well defined (1 × 1) structure with the same orientation as the underlying Ag(111) can be seen up to at least 12 ML. After completion of the third monolayer the ELS spectrum approached that observed for bulk aluminium. At a coverage of 3 ML the work function decreases by 0.4 eV from the clean silver value.  相似文献   

4.
A theoretical study of structural, electronic, elastic, thermal and mechanical properties of nonmagnetic intermetallics YM (M=Cu, Zn and Ag), which crystallize in CsCl-type structure, is performed using first principles density functional theory based on full potential linearized augmented plane wave (FP-LAPW) method. The calculations are carried out within the generalized gradient approximation (GGA) for the exchange correlation potential. The calculated ground state properties such as lattice constants, bulk modulus and elastic constants agree well with the experiment. From energy dispersion curves, it is found that these compounds are metallic in nature. The ductility of these intermetallics is determined by calculating the bulk to shear ratio B/GH. The calculated results indicate that YAg is the most ductile amongst the present YM compounds. The results obtained are compared with the available experimental and theoretical results. The mechanical and thermal properties are predicted from the calculated values of elastic constants.  相似文献   

5.
Resolution, sensitivity and calibration data are presented for a novel high energy XPS source, monochromated Ag Lα radiation (hv = 2984.3 eV). Adequate resolution is attainable for good signal/noise spectra, whilst values for experimental sensitivity factors agree well with theoretical cross section values calculated by Nefedov. This allows an evaluation of ESCA 3 Mk. II transmission function up to 3000 eV, which appears to obey an approximate E?12 dependence. Monochromated Ag Lα (linewidth 1.3 eV) overcomes the problem of broad natural linewidths for high energy sources, such that chemical state information can be gained. Various new core level and Auger peaks are developed, a notable feature being the 1s core level and KLL Auger transition capability from Al through to Cl. Improved sensitivity is experienced for elements whose major peaks occur in the 1500–3000 eV BE range, whilst there is no serious reduction of sensitivity in the conventional XPS energy range.  相似文献   

6.
Very thin films of TiO2 and Ti2O3 were deposited by evaporation on Ag, on silver oxidized by an oxygen plasma and on Pt. Depending on the coverage, there were changes in the values of the binding energy (BE) and the Auger parameter (α′) of O and Ti. These shifts occur in the opposite direction with respect to that previously found for TiO2 supported on insulators. Among others, reasons for these shifts are the different relaxation energy of photoholes and the occurrence of charge transfer processes at the metal oxide/metal interface. UV-visible absorption spectra of thin films of TiO2Ag composites have shown a narrowing in the gap energy (Eg) of the oxide in respect to bulk titania. This observation shows the existence of a correlation between Eg and α′ when TiO2 is supported on a metal surface. The Auger parameter of O and Ti is also sensitive to the intercalation of TiO2 within a “sandwich” structure of SiO2 and Ag, and the values found for the spectroscopic parameters are intermediate between those of TiO2 supported on Ag and SiO2. This result opens up the possibility of modulating the electronic properties of thin layers of TiO2 by interaction with other materials.  相似文献   

7.
We report a simple, ab initio method for calculating the electronic structure of compositionally disordered alloys. Results are shown for Cu/Ni and Ag/Pd bulk systems, and the first calculations are reported for the surface electronic structure of random alloys, exemplified by {111} surface states of Cu/Ni and Cu/Al alloys.  相似文献   

8.
A review of the main available methods of background removal in Auger electron Spectroscopy and X-ray photoelectron Spectroscopy is given. The major features, assumptions and results of theoretical works, which form the basis of the present method, are presented. This method uses a convolution technique of the experimental spectrum with the single event loss function. It has been applied to Auger electron spectra (Si, Ag, Fe, Ni, Cu, Al). When Auger energy is sufficiently low (Si, Ag), it has been assumed that Auger electrons act as a secondary electrons source within a multiplet energy range. In every case results are satisfactory.  相似文献   

9.
The structural, electronic and dynamic properties of cesium chloride, ZrRu and ZrZn were studied by employing an ab initio pseudopotential method and a linear response scheme, within the generalized gradient approximation. The calculated lattice constant, bulk modulus and first-order pressure derivative of the bulk modulus were reported in B2 structure and compared with available experimental and other theoretical results. The electronic band structure, partial and total density of states were determined by using the Quantum-Espresso ab initio simulation package based on pseudopotential method. Phonon dispersion curves and density of states were calculated by employing a density functional perturbation theory.  相似文献   

10.
Oxygen chemisorption and NiO nucleation and growth on Ni(110) have been studied with low energy electron diffraction and Auger electron spectroscopy. Changes in the Auger peak energies and shapes were shown to occur only upon NiO formation. The effects of step-changes in temperature upon NiO nucleation and growth were studied and it was shown that temperature steps or annealing during the chemisorption regime did not significantly affect either chemisorption or NiO formation. During NiO growth, temperature steps to a higher temperature caused reduced growth rates, while steps to lower temperature caused increased growth rates. The reaction rate constant from the island growth model was calculated and shown to agree with literature data. The values obtained from temperature step measurements agreed within a factor of two with those obtained for reactions without temperature steps. Therefore, no systematic temperature effect upon the NiO nuclei density was observed for Ni(110). The activation energy for growth of NiO was found to be 5.5 kcal/mole. Dissolution of oxygen into bulk nickel was also studied and it was shown that bulk diffusion of oxygen in nickel was not rate controlling. Rather, surface phase transitions were observed which allowed incorporation of oxygen over the temperature range of 150°C to greater than 800°C, depending on the quantity of oxygen already incorporated.  相似文献   

11.
The adsorption of methanol and methoxy on NiAl(1 1 0) and Ni3Al(1 1 1) has been investigated using density functional theory (DFT). Optimised adsorption geometries and core level shifts are presented. On both surfaces we find that methanol binds to the Al on-top site via its oxygen atom and with the C–O axis tilted away from the surface normal. Methoxy also shows a preference for Al-dominated sites. On NiAl(1 1 0), we predict that methoxy adsorbs with its oxygen atom in the Al–Al bridge site, while it is determined to be adsorbed with its oxygen atom in a 2Ni + Al hollow site on Ni3Al(1 1 1), closer to Al than Ni. Surface and adsorbate induced binding energy shifts in the Al 2p states are calculated and found to be in good agreement with experimental high resolution photoelectron spectroscopy results.  相似文献   

12.
We have investigated the interaction of molecular oxygen with the Ag(1 0 0) surface in a temperature range from 130 K to 470 K and an oxygen partial pressure ranging up to 10 mbar by scanning tunneling microscopy, low electron energy diffraction, Auger electron spectroscopy and ab initio density functional calculations. We find that at 130 K, following oxygen exposures of 6000 Langmuirs O2, the individual oxygen atoms are randomly distributed on the surface. When the sample is exposed to 10 mbar O2 at room temperature, small, p(2 × 2) reconstructed patches are formed on the surface. After oxidation at ≈470 K and 10 mbar O2 pressure the surface undergoes a c(4 × 6) reconstruction coexisting with a (6 × 6) superstructure. By ab initio thermodynamic calculations it is shown that the c(4 × 6) reconstruction is an oxygen adsorption induced superstructure which is thermodynamically stable for an intermediate range of oxygen chemical potential.  相似文献   

13.
The interaction of oxygen with Ag(111) has been studied over the pressure range 10?2?1.0 Torr. Thermal desorption measurements using isotopically labelled molecules unambiguously establish the presence of a stable chemisorbed dioxygen species which co-exists with adsorbed atomic oxygen. Dissolved oxygen undergoes exchange with the latter species but not with the former. The maximum dioxygen population is found to be markedly sensitive to gas dosing pressure; a model is proposed which accounts for these observations and for related observations on alkali-doped Ag. XP and UP spectral features can be correlated with the two types of oxygen species; angle-resolved XP and Auger spectra indicate that O2 (a) resides on the metal surface whereas O(a) is located within the surface. The XP spectra also suggest that in the case of O2(a) the molecular axis may lie perpendicular to the surface.  相似文献   

14.
Seven low-lying triply exited states of lithium-like oxygen and neon are calculated with the multichannel saddle-point and saddle-point complex-rotation methods. The term energies are given for these excited states, along with level shifts and partial Auger widths from dominant decay channels. The mass polarization effect and relativistic corrections are included. The radiative transition rates are also calculated. These results are compared with other theoretical data in the literature. Received: 25 May 1998 / Revised: 28 July 1998 / Accepted: 25 August 1998  相似文献   

15.
A combination of Auger spectrometry and mass spectrometry was employed to study CO chemisorption on polycrystalline Mo surfaces at room temperature. We observed five adsorption states and calculated the binding parameters (E,n00) for the three important states. The results obtained by the two methods are in accord but we pointed out the occurence of electronic desorption in Auger experiments. Contamination effects by C atoms in such studies were investigated by repeated cycles of adsorption-desorption and a characteristic evolution of flash desorption peaks was observed. The results are discussed in this point of view enhancing the importance of a control of the adsorption surface cleanness by a method of great sensibility like Auger spectrometry.  相似文献   

16.
The energy spectra of secondary electrons back-scattered from clean, oxygen covered, and Cu covered Al surfaces have been determined. The data support the previous suggestion that Auger electrons can experience both characteristic energy loss and absorption phenomena. From the experimental results it was not possible to determine whether densities of states of electrons in the valence band affected the Al L2,3 VV Auger spectrum. This portion of the spectrum was greatly changed by oxygen absorption on the Al surface, but little affected by less than a monolayer of Cu. Conversely, characteristic loss spectra were less sensitive to oxygen on the surface, but were highly sensitive to the presence of copper at even less than monolayer coverage. A correlation between characteristic loss and “true” secondary spectra from clean surfaces was established and possible reasons for the correlation are discussed.  相似文献   

17.
The electronic structure and geometry of the Al-terminated corundum (0001) surface were studied using a slab model within the ab-initio Hartree-Fock technique. The distance between the top Al plane and the next O basal plane is found to be considerably reduced on relaxation (by 0.57 Å, i.e. by 68% of the corresponding interlayer distance in the bulk). An interpretation of experimental photoelectron spectra (UPS He I) and metastable impact electron spectra (MIES) is given using the calculated total density of states of the slab and the projections to the atoms, atomic orbitals, and He 1s floating atomic orbital at different positions above the surface. Calculated projected densities of states exhibit a strong dependence on the relaxation of surface atoms. The good agreement of simulated and experimental UPS and MIES spectra supports the correctness of calculated surface relaxation.  相似文献   

18.
Ferromagnetic ordering of silver impurities in the AlN semiconductor is predicted by plane-wave ultrasoft pseudopotential and spin-polarized calculations based on density functional theory (DFT). It was found that an Ag impurity atom led to a ferromagnetic ground state in Ag0.0625Al0.9375N, with a net magnetic moment of 1.95 μB per supercell. The nitrogen neighbors at the basal plane in the AgN4 tetrahedron are found to be the main contributors to the magnetization. This magnetic behavior is different from the ones previously reported on transition metal (TM) based dilute magnetic semiconductor (DMS), where the magnetic moment of the TM atom impurity is higher than those of the anions bonded to it. The calculated electronic structure band reveals that the Ag-doped AlN is p-type ferromagnetic semiconductor with a spin-polarized impurity band in the AlN band gap. In addition, the calculated density of states reveals that the ferromagnetic ground state originates from the strong hybridization between 4d-Ag and 2p-N states. This study shows that 4d transition metals such as silver may also be considered as candidates for ferromagnetic dopants in semiconductors.  相似文献   

19.
Chemisorption of oxygen atom on aluminium (1 1 1), (1 1 0) and (1 0 0) surfaces is studied using ab-initio plane wave pseudopotential method based on density functional theory (DFT). Oxygen atom chemisorbed on three different high symmetry sites; top, short-bridge and hollow sites on the aluminium surfaces are examined. It has been found that the O-adatom adsorbed at the hollow site on aluminium (1 1 1), (1 1 0) and (1 0 0) plane yield energetically most stable structure. Calculation of chemisorption energies of O-adatom on aluminium surfaces shows that oxygen is most strongly bound to aluminium atoms on Al(1 1 1) plane and the calculated value of the chemisorption energy of O-adatom at the hollow site on Al(1 1 1) surface is 4.8 eV. In this work, the chemisorption energies calculated for O-adatom on Al(1 1 0) and Al(1 0 0) surfaces are reported for the first time. The electronic structures and the electronic charge density distributions of the oxygen chemisorbed aluminium surfaces are also investigated. Calculations show that for aluminium, p orbitals also contribute significantly along with the s orbitals during the bond formation with oxygen atom. Therefore, the possibilities of hybridizations lead to the strong bonding configurations.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号