首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This paper presents a successive quadratic programming algorithm for solving general nonlinear programming problems. In order to avoid the Maratos effect, direction-finding subproblems are derived by modifying the second-order approximations to both objective and constraint functions of the problem. We prove that the algorithm possesses global and superlinear convergence properties.This work was supported in part by a Scientific Research Grant-in-Aid from the Ministry of Education, Science and Culture, Japan.  相似文献   

2.
By using conjugate directions a method for solving convex quadratic programming problems is developed. The algorithm generates a sequence of feasible solutions and terminates after a finite number of iterations. Extensions of the algorithm for nonconvex and large structured quadratic programming problems are discussed.Sponsored by the United States Army under Contract No. DAAG29-80-C-0041 and in part by the Natural Sciences and Engineering Research Council of Canada under Grant Nos. A 8189 and E 5582.  相似文献   

3.
This paper presents a theoretical result on convergence of a primal affine-scaling method for convex quadratic programs. It is shown that, as long as the stepsize is less than a threshold value which depends on the input data only, Ye and Tse's interior ellipsoid algorithm for convex quadratic programming is globally convergent without nondegeneracy assumptions. In addition, its local convergence rate is at least linear and the dual iterates have an ergodically convergent property.Research supported in part by the NSF under grant DDM-8721709.  相似文献   

4.
1. IntroductionThe quadratic programming (QP) problem is the most simple one in nonlinear pro-gramming and plays a very important role in optimization theory and applications.It is well known that matriX splitting teChniques are widely used for solving large-scalelinear system of equations very successfully. These algorithms generate an infinite sequence,in contrast to the direct algorithms which terminate in a finite number of steps. However,iterative algorithms are considerable simpler tha…  相似文献   

5.
This paper proposes a column generation approach based on the Lagrangean relaxation with clusters to solve the unconstrained binary quadratic programming problem that consists of maximizing a quadratic objective function by the choice of suitable values for binary decision variables. The proposed method treats a mixed binary linear model for the quadratic problem with constraints represented by a graph. This graph is partitioned in clusters of vertices forming sub-problems whose solutions use the dual variables obtained by a coordinator problem. The column generation process presents alternative ways to find upper and lower bounds for the quadratic problem. Computational experiments were performed using hard instances and the proposed method was compared against other methods presenting improved results for most of these instances.  相似文献   

6.
We consider the maximization for a given symmetric . It was shown recently, using properties of zonotopes and hyperplane arrangements, that in the special case that A has a small rank, so that A = VV T where with m < n, then there exists a polynomial time algorithm (polynomial in n for a given m) to solve the problem . In this paper, we use this result, as well as a spectral decomposition of A to obtain a sequence of non-increasing upper bounds on γ with no constraints on the rank of A. We also give easily computable necessary and sufficient conditions for the absence of a gap between the solution and its upper bound. Finally, we incorporate the semidefinite relaxation upper bound into our scheme and give an illustrative example.  相似文献   

7.
Probabilistically constrained quadratic programming (PCQP) problems arise naturally from many real-world applications and have posed a great challenge in front of the optimization society for years due to the nonconvex and discrete nature of its feasible set. We consider in this paper a special case of PCQP where the random vector has a finite discrete distribution. We first derive second-order cone programming (SOCP) relaxation and semidefinite programming (SDP) relaxation for the problem via a new Lagrangian decomposition scheme. We then give a mixed integer quadratic programming (MIQP) reformulation of the PCQP and show that the continuous relaxation of the MIQP is exactly the SOCP relaxation. This new MIQP reformulation is more efficient than the standard MIQP reformulation in the sense that its continuous relaxation is tighter than or at least as tight as that of the standard MIQP. We report preliminary computational results to demonstrate the tightness of the new convex relaxations and the effectiveness of the new MIQP reformulation.  相似文献   

8.
We investigate new bounding strategies based on different relaxations of the quadratic assignment problem. In particular, we improve the lower bound found by using an eigenvalue decomposition of the quadratic part and by solving a linear program for the linear part. The improvement is accomplished by applying a steepest ascent algorithm to the sum of the two bounds.Both authors would like to thank the Natural Sciences and Engineering Research Council Canada and the Austrian Government for their support.This author would like to acknowledge partial support from the Department of Combinatorics and Optimization at the University of Waterloo.Research partially supported by Natural Sciences and Engineering Research Council Canada.  相似文献   

9.
In this paper, a class of general nonlinear programming problems with inequality and equality constraints is discussed. Firstly, the original problem is transformed into an associated simpler equivalent problem with only inequality constraints. Then, inspired by the ideals of the sequential quadratic programming (SQP) method and the method of system of linear equations (SLE), a new type of SQP algorithm for solving the original problem is proposed. At each iteration, the search direction is generated by the combination of two directions, which are obtained by solving an always feasible quadratic programming (QP) subproblem and a SLE, respectively. Moreover, in order to overcome the Maratos effect, the higher-order correction direction is obtained by solving another SLE. The two SLEs have the same coefficient matrices, and we only need to solve the one of them after a finite number of iterations. By a new line search technique, the proposed algorithm possesses global and superlinear convergence under some suitable assumptions without the strict complementarity. Finally, some comparative numerical results are reported to show that the proposed algorithm is effective and promising.  相似文献   

10.
Consider the semidefinite relaxation (SDR) of the quadratic integer program (QIP): where Q is a given symmetric matrix and D is diagonal. We consider the SDR gap We establish the uniqueness of the SDR solution and prove that if and only if γr:=n−1max{xTVVTx:x ∈ {-1, 1}n}=1 where V is an orthogonal matrix whose columns span the (r–dimensional) null space of DQ and where D is the unique SDR solution. We also give a test for establishing whether that involves 2r−1 function evaluations. In the case that γr<1 we derive an upper bound on γ which is tighter than Thus we show that `breaching' the SDR gap for the QIP problem is as difficult as the solution of a QIP with the rank of the cost function matrix equal to the dimension of the null space of DQ. This reduced rank QIP problem has been recently shown to be solvable in polynomial time for fixed r.  相似文献   

11.
One of the most interesting topics related to sequential quadratic programming algorithms is how to guarantee the consistence of all quadratic programming subproblems. In this decade, much work trying to change the form of constraints to obtain the consistence of the subproblems has been done. The method proposed by De O. Pantoja J.F. A. and coworkers solves the consistent problem of SQP method, and is the best to the authors’ knowledge. However, the scale and complexity of the subproblems in De O. Pantoja’s work will be increased greatly since all equality constraints have to be changed into absolute form. A new sequential quadratic programming type algorithm is presented by means of a special ε-active set scheme and a special penalty function. Subproblems of the new algorithm are all consistent, and the form of constraints of the subproblems is as simple as one of the general SQP type algorithms. It can be proved that the new method keeps global convergence and Local superlinear convergence. Project partly supported by the National Natural Science Foundation of China.  相似文献   

12.
Because of the many important applications of quadratic programming, fast and efficient methods for solving quadratic programming problems are valued. Goldfarb and Idnani (1983) describe one such method. Well known to be efficient and numerically stable, the Goldfarb and Idnani method suffers only from the restriction that in its original form it cannot be applied to problems which are positive semi-definite rather than positive definite. In this paper, we present a generalization of the Goldfarb and Idnani method to the positive semi-definite case and prove finite termination of the generalized algorithm. In our generalization, we preserve the spirit of the Goldfarb and Idnani method, and extend their numerically stable implementation in a natural way. Supported in part by ATERB, NSERC and the ARC. Much of this work was done in the Department of Mathematics at the University of Western Australia and in the Department of Combinatorics and Optimization at the University of Waterloo.  相似文献   

13.
In this paper, a sequential quadratically constrained quadratic programming (SQCQP) method for unconstrained minimax problems is presented. At each iteration the SQCQP method solves a subproblem that involves convex quadratic inequality constraints and a convex quadratic objective function. The global convergence of the method is obtained under much weaker conditions without any constraint qualification. Under reasonable assumptions, we prove the strong convergence, superlinearly and quadratic convergence rate.  相似文献   

14.
Recently, Zhang, Tapia, and Dennis (Ref. 1) produced a superlinear and quadratic convergence theory for the duality gap sequence in primal-dual interior-point methods for linear programming. In this theory, a basic assumption for superlinear convergence is the convergence of the iteration sequence; and a basic assumption for quadratic convergence is nondegeneracy. Several recent research projects have either used or built on this theory under one or both of the above-mentioned assumptions. In this paper, we remove both assumptions from the Zhang-Tapia-Dennis theory.Dedicated to the Memory of Magnus R. Hestenes, 1906–1991This research was supported in part by NSF Cooperative Agreement CCR-88-09615 and was initiated while the first author was at Rice University as a Visiting Member of the Center for Research in Parallel Computation.The authors thank Yinyu Ye for constructive comments and discussions concerning this material.This author was supported in part by NSF Grant DMS-91-02761 and DOE Grant DE-FG05-91-ER25100.This author was supported in part by AFOSR Grant 89-0363, DOE Grant DE-FG05-86-ER25017, and ARO Grant 9DAAL03-90-G-0093.  相似文献   

15.
《Optimization》2012,61(6):731-755
Despite of their excellent numerical performance for solving practical nonlinear programming problems, the theoretical convergence behavior of generalized reduced gradient algorithms has been investigated very seldom in the literature. One specific class of generalized reduced gradient methods will be presented for which a global convergence result can be shown, i.e. the approximation of a Kuhn-Tucker point starting from arbitrary initial values. The relationship of the proposed variant with some other versions of generalized reduced gradient algorithms will be discussed.  相似文献   

16.
We present an optimal piecewise-linear approximation method for the objective function of separable convex quadratic programs. The method provides guidelines on how many grid points to use and how to position them for a piecewise-linear approximation if the error induced by the approximation is to be bounded a priori.Corresponding author.  相似文献   

17.
This is a summary of the author’s PhD thesis supervised by A. Billionnet and S. Elloumi and defended on November 2006 at the CNAM, Paris (Conservatoire National des Arts et Métiers). The thesis is written in French and is available from http://www.cedric.cnam.fr/PUBLIS/RC1115. This work deals with exact solution methods based on reformulations for quadratic 0–1 programs under linear constraints. These problems are generally not convex; more precisely, the associated continuous relaxation is not a convex problem. We developed approaches with the aim of making the initial problem convex and of obtaining a good lower bound by continuous relaxation. The main contribution is a general method (called QCR) that we implemented and applied to classical combinatorial optimization problems.   相似文献   

18.
We give a complete characterization of constant quadratic functions over an affine variety. This result is used to convexify the objective function of a general quadratic programming problem (Pb) which contains linear equality constraints. Thanks to this convexification, we show that one can express as a semidefinite program the dual of the partial Lagrangian relaxation of (Pb) where the linear constraints are not relaxed. We apply these results by comparing two semidefinite relaxations made from two sets of null quadratic functions over an affine variety.   相似文献   

19.
A new descent algorithm for solving quadratic bilevel programming problems   总被引:2,自引:0,他引:2  
1. IntroductionA bilevel programming problem (BLPP) involves two sequential optimization problems where the constraint region of the upper one is implicitly determined by the solutionof the lower. It is proved in [1] that even to find an approximate solution of a linearBLPP is strongly NP-hard. A number of algorithms have been proposed to solve BLPPs.Among them, the descent algorithms constitute an important class of algorithms for nonlinear BLPPs. However, it is assumed for almost all…  相似文献   

20.
An iterative method based on the successive overrelaxation (SOR) is proposed to solve quadratic programming of net important spatial equilibrium models. The algorithm solves the problem by updating the variables pairwise at each iteration. The principal feature of the algorithm is that the lagrange multipliers corresponding to the constraints do not have to be calculated at each iteration as is the case in SOR based algorithms. Yet the Lagrange multipliers can easily be extracted from the solution values.This research was partially supported by grants from the James F. Kember Foundation and the School of Business, Loyola University of Chicago.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号