首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Elemental profiles of brain tumor tissues from 15 patients of astrocytomas (grade I–III) and normal human brain tissues of 23 male age matched autopsies as controls have been studied by instrumental neutron activation analysis. The SLOWPOKE reactor with a thermal neutron flux of 8·1011n·cm–2·s–1 and swimming pool type reactor with a thermal neutron flux of 1·1013n·cm–2·s–1 were used for short and long irradiation of samples, respectively. Spectrophotometry was only used for analyzing phosphorus. A total of 18 elements Se, Na, K, Br, Cl, Mn, Mg, S, Ca, Cu, Hg, Cr, Fe, Rb, Zn, Co, Sc and P has been determined for this purpose. The reliability of methods has been checked by analyzing biological standard reference materials horse kidney (IAEA H-8) and bovine liver (NBS SRM 1577a). The analytical results showed that compared with the normal brain tissues, concentrations of Ca, Fe, Cu, Zn, Se, Mn, Br and Sc were significantly higher in tumor tissues (P<0.01) and concentrations of Rb, K and P were lower, while no differences for contents of Mg, S, Cr, Hg, Na and Cl were observed. A negative correlation between P and Ca in malignant and normal brain tissues was observed.  相似文献   

2.
In this work, a simple group separation scheme based on extraction for NAA determination of trace of As, Cd, Hg, Cu and Zn in biological materials is described. For this purpose, zinc-diethyldithiocarbamate, Zn(DDC)2, and methyl isobutyl ketone-iodide have been chosen as reagents. The elements can be extracted successively and quantitatively from strong mineral acids without adjusting pH of the solution, and separated into two groups suitable for gamma-ray spectrometry. Samples of 100–200 mg dry weight were double-sealed into polyethylene bags and irradiated in a swimming pool reactor with a thermal neutron flux of 1013n·cm–2·s–1 for 44 hours. After a cooling period of 1–3 days, the samples were digested with microgram quantities of carrier in concentrated nitric acid and sulfuric acid at 150°C for 3.5 hours in a teflon bomb, then extracted as described above. The reliability of the analytical method was checked using reference materials Horse Kidney IAEA H-8, Human Hair NIES-5 and Tomato Leaves NBS-1573. Most of the results obtained for reference materials agreed with the certified values12. Chinese autopsy samples of hair and liver were presented.  相似文献   

3.
Instrumental neutron activation analysis (INAA) technique has been applied to a water sample to determine the elemental concentrations. The sample was irradiated at a neutron flux of 1.2·1012 n·cm–2·s–1 for two different periods followed by counting at three different decay times, using two coaxial type high-resolution Ge(Li) detectors. The dominant elements detected in the water sample are Ca, Cl, Na, Mg, and K present in levels while Co, I, Mn, Sm, and Sb are present in smaller amounts approximately on the average 0.01 ppm. Only traces of other elements such as rare-earth elements, Ag, As, Ba, Cu, Cd, Fe, Sr, W, Zn, seem to be present in the water samples.  相似文献   

4.
Plastic products may contain high levels of trace elements, which, upon final incineration, may affect the environment. In the case of packing material, may affect food quality. In this work, instrumental neutron activation analysis was applied to the determination of As, Ba, Br, Cd, Co, Cr, Fe, Sb, Sc, Se, Ti and Zn in plastic materials originated from household and hospital wastes. Toxic elements such as Cd and Sb were found at the levels of mg·kg–1 in some food containers and also high levels of Ti were found in opaque packages. The accuracy and the precision of results were also evaluated by interlaboratory comparison.  相似文献   

5.
The toxicity of Se, Cd, and Hg as environmental pollutants and the impact of these elements on the aquatic ecosystem is undisputed. The present paper reports an investigation of the concentration of Cd, Se, and Hg in an aquatic environment of a large metropolitan city like Bombay. As the toxicity of these elements manifests itself at micro and submicro levels, the very sensitive technique of neutron activation analysis was employed. A sequential substoichiometric extraction technique for the separation of radiochemically pure203Hg,75Se, and115–115mCd from the neutron irradiated target has also been employed.  相似文献   

6.
Instrumental neutron activation analysis (INAA) has been applied to multielemental determinations of Brazilian snake venoms from the species: Bothrops jararacussu, Crotalus durissus terrificus and Bothrops jararaca. Concentrations of Br, Ca, Cl, Cs, K, Mg, Na, Rb, Sb, Se and Zn have been determined in lyophilized venoms by using short and long irradiations in the IEA-RI nuclear reactor under a thermal neutron flux of 1011 to 1013 n0 ·cm–2·s–1. The reference materials NIST bovine Liver 1577 and IUPAC Bowen's Kale were also analyzed simultaneously with the venoms to evaluate the accuracy and the reproducibility of the method. The concentrations of the elements found in snake venoms from different species were compared. The Crotalus durissus terrificus venoms presented high concentration of Se but low concentrations of Zn when these results are compared with those obtained from genera Bothrops venoms.  相似文献   

7.
To identify and improve the analytical technique for air pollution research, four kinds of environmental standard samples, i.e., airbome particulate matter, coal flyash, soil and pine needle supplied from the NIST and the IAEA were analyzed using thermal and epithermal neutron activation techniques. Sample irradiation was done at the irradiation facilities (neutron flux, 1 · 1013 n·cm–2·s–1) of the TRIGA MARK-III Research Reactor in the Korea Atomic Energy Research Institute. The accuracy and precision for the analysis of 40 trace and toxic elements in the samples were compared with the certified and reported values, respectively. In the analytical results of all standard reference materials, the relative standard deviation were within the 15% except for 11 elements and the relative error were agreed within the 10–20% except for 13 elements. The benefit of epithermal activation was investigated and the optimum analytical condition is reported.  相似文献   

8.
The yeast cells, Saccharomyces cerevisiae, were exposed to Hg2+ ions (10–4M) and SeO2 (2·10–4–10–2M) or Se- methionine (2·10–4M). Instrumental neutron activation analysis (INAA) was used to analyze changes in the Hg, Zn, Fe and Co levels in these cells. When the yeast was incubated in a medium containing 10–3M and 10–2M SeO2, the Hg content of the yeast markedly increased. It was also found that the uptake of Se and Hg influenced the levels of Zn, Fe and Co found in the cells. While the presence of Se-methionine (Se-Met), SeO2 or Hg2+ ions caused increases in the intracellular Zn levels, the combined presence of Hg2+ and SeO2 and their assumed interaction, reduced the efficiency of Se for increasing the Zn content of yeast.  相似文献   

9.
Differences in the effects of seleno-cystine (CySe)2 and inorganic Se(IV) and Se(VI) compounds on uranium(VI) uptake by yeast cells, Saccharomyces cerevisiae have been studied. The Se, U, Zn and Co levels of the yeast cells were measured by neutron activation analysis. An increase in the concentration of U cells within the first 2 hours of incubation was produced by the presence of SeO2 (2·10–4–5·10–4M) and (CySe)2 (1·10–4M) in the yeast medium. Moreover, the highest SeO2 concentration (5·10–4M) and (CySe)2 more efficiently enhanced the U content of the cells than SeO2 at the low concentration end (2·10–4M). However, the effect of SeO2 and (CySe)2 on U uptake diminishes with incubation time (from 2 to 48 hours). Se(VI) [as (NH4)2SeO4] leads to a marked decrease in the content of uranium in Saccharomyces cerevisiae (an antagonistic interaction). As expected, uranium uptake by the yeast influence the retention of selenium in the cells. Uranium significantly increased the uptake yield of Se by Saccharomyces cerevisiae when the yeast was incubated in the medium containing (CySe)2. Furthermore, during the initial 24 hours of the incubation an increase of the Se content of the cells in the presence of U was observed when Se(VI) was in the culture medium. Selenium and uranium dosages affected the Zn and Co contents of cells.  相似文献   

10.
An instrumental neutron activation analysis technique has been developed for the determination of As, Au, Ba, Co, Cr, Fe, Hf, Sb, Ta, Th, U, W and Zn in large (10–15 g) geological samples using in-pool irradiation with a SLOWPOKE-2 reactor. The technique allows for the simultaneous irradiation of multiple samples using a neutron flux of between 4·1013 and 8·1013 n·m–2·s–1. The detection limits obtained using the analytical methodology described in this paper are acceptable for exploration geochemistry and the technique has been used to analyze samples collected as part of a metallic minerals survey of Jamaica.  相似文献   

11.
As a contribution to nondestructive neutron assay of reactor grade aluminium, a number of elements have been investigated qualitatively and quantiatively using a vertical channel in the IRT-5000 reactor with a thermal neutron flux of 7.6·1012n·cm–2·s–1. The -ray spectra of irradiated samples were analysed with a 30 cm3 Ge(Li) detector connected to an HP-computer and a 4096 channel analyser. The following impurities have been determined: Sc, Ca, Cr, Fe, Ni, Co, Zn, As, Sb, W, Au, Th and U, while Lu and Hf have been determined qualitatively only.  相似文献   

12.
Instrumental neutron activation analysis (INAA) has been used for the determination of 27 elements (Ag, Au, Ba, Br, Ce, Co, Cr, Cs, Eu, Fe, Ga, Hg, Hf, K, La, Mn, Na, Sb, Sc, Se Sr, Th, P, Ta, Tb, Zn and Zr) in 15 water samples collected from different sources (reservoirs, well, borewell, sewage tank, river, rain) in and around Nagpur city (central India) including doubly distilled and a sea water sample from Bombay. Sample residues after evaporation were irradiated at a thermal neutron flux of 1012–1013 n·cm–2·s–1 for 10 min, 1d and 1wk and counted using a HPGe detector and an 4k MCA at different intervals. Several environmental standards from NIST (USA), NIES (Japan) and USGS rock were also analysed for quality assurance. Wide variations in elemental concentrations have been observed in water samples from different sources. Most elemental concentrations in drinking water from various sources, are within ISI/WHO limits. Sea water showed very high concentrations of Ba, Cr, Co, Fe, Hg, Sb, Se and Zn. For doubly distilled and rain waters, however, very low elemental concentrations of Ba, Ce, Fe, Sc, Hg, Se, Sr and Th were observed.  相似文献   

13.
The analytical potential of a fast neutron reactor has been studied. The maximum density of the neutron flux is 2.5·1015 cm–2·s–1 at a maximum energy of 450 keV. The determining reaction for activation analysis at this reactor is an (n, n) reaction. The possibility of selectively determining Pb, Hg, Cd, Au, Ag and other elements at a level of 10–5–10–8% is demonstrated. This activation technique allows rapid determination of these elements.  相似文献   

14.
A simple preconcentration method is described for the simultaneous coprecipitation of Cd(II), Co(II), Cu(II), Mo(VI), U(VI), V(V) and Zn(II) from surface water samples followed by quantitation using neutron activation analysis. Ammonium pyrrolidinedithiocarbanate (APDC), anthranilic acid and 8-hydroxyquinoline have been investigated as possible coprecipitating agents. The suitability of Bi3+, Fe3+, Ni2+ and Pb2+ ions as metal carriers has also been studied. It has been found that the above elements can be quantitatively coprecipitated with APDC in the presence of Bi3+ carrier at pH 4. The precision and accuracy of the method for all elements are found to be between ±2 and 10%. The enrichment factors are of the order of 103. The detection limits are in the ppb range varying between 0.04 ng · ml–1 for Co and V and 5 ng · ml–1 for Zn. The method has been applied to tap and well waters, and river and lake water samples collected from Halifax County, Nova Scotia.  相似文献   

15.
Neutron activation analysis of major and trace elements in crude petroleum   总被引:1,自引:0,他引:1  
We have determined the concentration of 25 trace elements in crude petroleum from seven Libyan oil fields by instrumental neutron activation analysis. Crude oil samples were irradiated with a thermal neutron dose rate of 1012 and 1013 n·cm–2·s–1 in the Tajoura research reactor. The concentration of U, Br, Mg, Cu, Na, V, Cl, Al, Mn and Ca is in a range of 0.015 to 84 ppm and that of sulphur of 0.12 to 1.8%. The elements Sc, Cr, Ni, Fe, Co, Zn, Ag, Se, Sb, Ba, Cs, Yb, Hf and Hg have a concentration range of 0.009 to 8747 ppb. The coefficients of variation are within 10%. The elements V and Ni occur as both porphyrin and non-porphyrin and the ratio of these two forms varies over a wide range. The V/Ni ratios are located between 0.17 and 6.67, which are comparable to the reported values for the crude oils from other countries.  相似文献   

16.
The trace elements content of Cola acuminata and three varieties of Cola nitida have been determined using neutron activation analysis. The samples have been irradiated at the Joint Universities Research Reactor, Risley, England for 71/2 hours in a neutron flux of 2.5·1012 n·cm–2s–1 and analysed using high resolution lithium drifted germanium detector coupled to a Canberra 35 microprocessor as a 4096 channel gamma spectrometer. The elements: Na, K, Br, W, Fe, Cs, Co, Zn, and Sc were detected.  相似文献   

17.
Applicability of a small neutron generator and a dual rectangular tube sample transfer system for analyses of U and Th using delayed fission neutron technique has been investigated. A way of optimizing the timing parameters is reported. At a fast neutron flux of 108 n.cm–2s–1, 0.02 w% U can be determined. For thorium determination this method is less sensitive. The Cd difference technique can be used for the simultaneous determination of U and Th but it has lower sensitivity.This work was supported in part by the IAEA.  相似文献   

18.
Instrumental neutron activation analysis /INAA/ technique has been applied to a water sample to determine the elemental concentrations. The sample was irradiated with a neutron flux of 1.2×1012 n cm–2 s–1 for two different periods followed by counting at three different decay times, using two coaxial type high-resolution Ge/Li/ detectors. The dominant elements determined in the water sample are Ca, Cl, Na, Mg, and K present in ppm-level while Co, I, Mn, Sm, and Sb are present in smaller amounts, approximately on the average 0.01 ppm. Only traces of other elements such as the rare-earth elements, Ag, As, Ba, Cu, Cd, Fe, Sr, W, Zn, seem to be present in the water sample.  相似文献   

19.
The content of trace elements in arsenic and antimony minerals from the Allchar mine, Macedonia, was determined by electrothermal atomic absorption spectrometry (ETAAS) and k0-instrumental neutron activation analysis (k0-INAA) after removal of arsenic and antimony. Their direct determination by ETAAS or k0-INAA in arsenic (realgar and orpiment) and antimony (stibnite) minerals is limited by strong matrix interferences from As and Sb. Successful elimination of both elements was realized by the extraction of their iodide complexes into toluene. It was found that the optimal conditions were triple extraction of arsenic into toluene from 6mol·L–1 HCl with addition of KI. Triple extraction of antimony was most successful in the system 4.5mol·L–1 H2SO4 and KI into toluene. In both cases, trace elements (Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb and Zn) were then detected in the aqueous phase by ETAAS. The proposed procedures with ETAAS were checked by the method of standard additions and Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb and Zn determined in realgar, orpiment and stibnite. Using k0-INAA the trace elements Ba, Ce, Co, Cr, Cs, Fe, Hg, Sc, Tb, Th, U and Zn in realgar and orpiment were determined before and after As and Sb removal from the same aliquot of sample. The removal of both elements with KI into toluene was higher than 99.8% and no losses of trace elements were observed.  相似文献   

20.
In order to assess the source of pollutants and the atmosphere quality in and around a thermal power plant, fugitive dust particulates from seven different locations and ambient air dust from six locations have been analyzed for 32 elements (As, Au, Ba, Br, Ce, Cl, Co, Cr, Cs, Cu, Eu, Fe, Ga, Hg, Hf, K, La, Lu, Mg, Mn, Na, P, Rb, Sb, Sc, Se, Ta, Tb, Te, Th, W and Yb) by employing instrumental neutron activation analysis (INAA). The method involves the irradiation of samples and comparator standards in a thermal neutron flux range of 1012–1013 n·cm–2·s–1 in a nuclear reactor for 10 min and 1 day followed by high resolution -spectrometry. Wide differences have been observed in the mean elemental concentrations of Fe, Co, Br, Mn, As, P. Ba and Cu in fugitive and ambient dust particulates coliected from these different locations. Further, a comparison of the elemental contents of the dust particulates from the plant with environmental standards (Urban Particulate Matter, Coal Fly Ash, Vehicle Exhaust and Coal) show significantly lower or comparable amounts of toxic and pollutant elements in the environmental samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号