首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A microchip structure for field amplification stacking (FAS) was developed, which allowed the formation of comparatively long, volumetrically defined sample plugs with a minimal electrophoretic bias. Up to 20-fold signal gains were achieved by injection and separation of 400 microm long plugs in a 7.5 cm long channel. We studied fluidic effects arising when solutions with mismatched ionic strengths are electrokinetically handled on microchips. In particular, the generation of pressure-driven Poiseuille flow effects in the capillary system due to different electroosmotic flow velocities in adjacent solution zones could clearly be observed by video imaging. The formation of a sample plug, stacking of the analyte and subsequent release into the separation column showed that careful control of electric fields in the side channels of the injection element is essential. To further improve the signal gain, a new chip layout was developed for full-column stacking with subsequent sample matrix removal by polarity switching. The design features a coupled-column structure with separate stacking and capillary electrophoresis (CE) channels, showing signal enhancements of up to 65-fold for a 69 mm long stacking channel.  相似文献   

2.
Kwok YC  Manz A 《Electrophoresis》2001,22(2):222-229
For the direct measurement of electrophoretic mobility, multiple-point (Shah function) detected, time-domain detector signals were converted into frequency-domain plots by means of Fourier transformation. Multiple sample plugs (up to a maximum of three) were introduced into the separation channel and the resultant time-domain signals were then Fourier-transformed. The multiple-sample injection technique has been successfully demonstrated for a one-component system and a separation. Though the number of fluorescing zones flowing through the illuminated length of the channel is greater than the number of analytes in the solution, Shah convolution Fourier transform detection (SCOFT) is able to identify the number of fluorescent species in the solution based on their migration velocities. The height of the fundamental peak increases as the number of injected sample plugs is increased. More importantly, the signal-to-noise ratio (S/N) is found to be proportional to the number of injected sample plugs. With these findings, the multiple-sample injection technique certainly has got many potential applications in trace analysis. The technique would be equally applicable to other separation techniques (e.g., high-performance liquid chromatography) and detection methods (e.g., absorption, refractive index).  相似文献   

3.
The double-T injector design employed in many microchip capillary electrophoresis devices allows for the formation of very small (50-500 pL) sample plugs for subsequent analysis on-chip. In this study, we show that sample plugs formed at the channel junction can be geometrically defined. The channel width and injector symmetry prove to be of great importance to good performance. A unique pushback of solvent into the side channels can be induced when the side channels have a very low resistance to flow, and this helps to better define the injected sample plug. Samples and running buffers of differing ionic strength (e.g., 10 mM KCl buffer and 20 mM KCl sample) can yield widely variable results in terms of plug shape and amount injected (variations of 1.5 to 10x). Applying bias voltages to all the intersecting channels aids in controlling the plug shape. However, when the ionic strengths of buffer and sample are not matched, the actual amount injected (up to 10x variations) can be inconsistent with the appearance of the plug formed in the injector (up to only 30 % variations). Operating at constant pH and ionic strength produced the most consistent results. This report examines the effects of altering the injector geometry and solution ionic strengths, and presents the results of using bias voltages to control plug formation. The observed results should provide a benchmark for modeling of the fluid dynamics in channel intersections.  相似文献   

4.
Liu J  Yang S  Lee CS  DeVoe DL 《Electrophoresis》2008,29(11):2241-2250
In situ photopolymerized polyacrylamide (PAAm) gel plugs are used as hydrodynamic flow control elements in a multidimensional microfluidic system combining IEF and parallel SDS gel electrophoresis for protein separations. The PAAm gel plugs offer a simple method to reduce undesirable bulk flow and limit reagent/sample crosstalk without placing unwanted constraints on the selection of separation media, and without hindering electrokinetic ion migration in the complex microchannel network. In addition to improving separation reproducibility, the discrete gel plugs integrated into critical regions of the chip enable the use of a simple pressure-driven sample injection method which avoids electrokinetic injection bias. The gel plugs also serve to greatly simplify operation of the spatially multiplexed system by eliminating the need for complex external fluidic interfaces. Using an FITC-labeled Escherichia coli cell lysate as a model system, the use of gel plugs is shown to significantly enhance separation reproducibility in a chip containing five parallel CGE channels, with an average variance in peak elution time of only 4.1%.  相似文献   

5.
Zhang L  Yin X 《Electrophoresis》2007,28(8):1281-1288
A simple and powerful microfluidic array chip-based electrophoresis system, which is composed of a 3-D microfluidic array chip, a microvacuum pump-based negative pressure sampling device, a high-voltage supply and an LIF detector, was developed. The 3-D microfluidic array chip was fabricated with three glass plates, in which a common sample waste bus (SW(bus)) was etched in the bottom layer plate to avoid intersecting with the separation channel array. The negative pressure sampling device consists of a microvacuum air pump, a buffer vessel, a 3-way electromagnet valve, and a vacuum gauge. In the sample loading step, all the six samples and buffer solutions were drawn from their reservoirs across the injection intersections through the SW(bus) toward the common sample waste reservoir (SW(T)) by negative pressure. Only 0.5 s was required to obtain six pinched sample plugs at the channel crossings. By switching the three-way electromagnetic valve to release the vacuum in the reservoir SW(T), six sample plugs were simultaneously injected into the separation channels by EOF and electrophoretic separation was activated. Parallel separations of different analytes are presented on the 3-D array chip by using the newly developed sampling device.  相似文献   

6.
Qin WH  Cao CX  Li S  Zhang W  Liu W 《Electrophoresis》2005,26(16):3113-3124
The paper advanced the theoretical procedures for quantitative design on selective stacking of zwitterions in full capillary sample matrix by a cathodic-direction moving reaction boundary (MRB) in capillary electrophoresis (CE) under control of electroosmotic flow (EOF). With the procedures, we conducted the theoretical computations on the selective stacking of two test analytes of L-histidine (His) and L-tryptophan (Trp) by the MRB created with 30 mM pH 3.0 formic acid-NaOH buffer and 2-80 mM sodium formate. The results revealed the following three predictions. At first, the MRB cannot stack His and Trp plugs if less than 12.5 mM sodium formate is used to form the MRB and prepare the sample matrix. Second, the MRB can stack His and/or Trp sample plugs completely if higher than 50 mM sodium formate is chosen to form the MRB. Third, the MRB can only focus His plug completely, but stack Trp plug partially if 20-50 mM sodium formate is used; this implied the complete MRB-induced selective stacking to His rather than Trp. All the three predictions were quantitatively proved by the experiments. With great dilution of sample matrix and control of EOF, controllable, simultaneous and MRB-induced selective stacking and separation of zwitterions were achieved. The theoretical results hold evident significances to the quantitative design of selective stacking conditions and the increase of detection sensitivity of zwitterions in CE. In addition, the control of EOF by cetyltrimethylammonium bromide (CTAB) can evidently improve the stacking efficiency to both His and Trp.  相似文献   

7.
The design and fabrication of a multilayered polymer micro-nanofluidic chip is described that consists of poly(methylmethacrylate) (PMMA) layers that contain microfluidic channels separated in the vertical direction by polycarbonate (PC) membranes that incorporate an array of nanometre diameter cylindrical pores. The materials are optically transparent to allow inspection of the fluids within the channels in the near UV and visible spectrum. The design architecture enables nanofluidic interconnections to be placed in the vertical direction between microfluidic channels. Such an architecture allows microchannel separations within the chip, as well as allowing unique operations that utilize nanocapillary interconnects: the separation of analytes based on molecular size, channel isolation, enhanced mixing, and sample concentration. Device fabrication is made possible by a transfer process of labile membranes and the development of a contact printing method for a thermally curable epoxy based adhesive. This adhesive is shown to have bond strengths that prevent leakage and delamination and channel rupture tests exceed 6 atm (0.6 MPa) under applied pressure. Channels 100 microm in width and 20 microm in depth are contact printed without the adhesive entering the microchannel. The chip is characterized in terms of resistivity measurements along the microfluidic channels, electroosmotic flow (EOF) measurements at different pH values and laser-induced-fluorescence (LIF) detection of green-fluorescent protein (GFP) plugs injected across the nanocapillary membrane and into a microfluidic channel. The results indicate that the mixed polymer micro-nanofluidic multilayer chip has electrical characteristics needed for use in microanalytical systems.  相似文献   

8.
The precise design and operational control of the separation process of liquid matrices is key to the performance of on-chip liquid analysis. Present research attempts from the engineering point of view to investigate of the process occurring in the microfluidic channels for chip design with the best separation efficiency. An one-dimensional model of electrokinetic sample motion was developed to simulate the separation process of sample containing amino acids (tryptophan, tyrosine, proline, methionine) that migrate in a buffer solution through a straight separation channel made of poly(methyl methacrylate) within a microfluidic chip under different conditions. On the basis of the simulations by the finite-difference method the effects of the channel size, the chip material, the applied voltage difference and the test solution pH on separation rate are discussed. It was found that for the channel length of 2 cm the resolution of peaks is optimal and the fastest time of amino acids separation is 4 s.  相似文献   

9.
In micro total analysis systems, liquid chromatography (LC) works under pressure-driven flow is the essential analysis component. There were not, however, much works on microchip LC. Here we developed a microchip for reversed-phase LC using porous monolithic silica. The chip consisted of a double T-shaped injector and a approximately 40-cm serpentine separation channel. The octadecyl-modified monolithic silica was prepared in the specified part of the channel on the microchip using sol-gel process. Furthermore, the effect of geometry of turn sections on band dispersion at turns was examined under pressure-driven flow. High separation efficiencies of 15,000-18,000 plates/m for catechins were obtained using the LC chip.  相似文献   

10.
Luo Y  Zhang Q  Qin J  Lin B 《Electrophoresis》2007,28(24):4769-4771
Hydrostatic pressure sample injection method is able to minimize the number of electrodes needed for a microchip electrophoresis process; however, it neither can be applied for electrophoretic DNA sizing, nor can be implemented on the widely used single-cross microchip. This paper presents an injector design that makes the hydrostatic pressure sample injection method suitable for DNA sizing. By introducing an assistant channel into the normal double-cross injector, a rugged DNA sample plug suitable for sizing can be successfully formed within the cross area during the sample loading. This paper also demonstrates that the hydrostatic pressure sample injection can be performed in the single-cross microchip by controlling the radial position of the detection point in the separation channel. Rhodamine 123 and its derivative as model sample were successfully separated.  相似文献   

11.
超高速平板通道毛细管电泳   总被引:8,自引:0,他引:8  
陈洪  宋立国 《分析化学》1997,25(9):1098-1103
超高速平板通道毛细管电泳是90年代发展的一种秒级分离的新颖技术。应用现代微电子光刻技术将化学反应。进样、分离和检测等组合在数厘米玻片上。实现分离分析的小型化、集成化、一体化和自动化。  相似文献   

12.
《Electrophoresis》2017,38(3-4):521-524
Acupuncture sample injection is a simple method to deliver well‐defined nanoliter‐scale sample plugs in PDMS microfluidic channels. This acupuncture injection method in microchip CE has several advantages, including minimization of sample consumption, the capability of serial injections of different sample solutions into the same microchannel, and the capability of injecting sample plugs into any desired position of a microchannel. Herein, we demonstrate that the simple and cost‐effective acupuncture sample injection method can be used for PDMS microchip‐based field amplified sample stacking in the most simplified straight channel by applying a single potential. We achieved the increase in electropherogram signals for the case of sample stacking. Furthermore, we present that microchip CGE of ΦX174 DNA‐HaeⅢ digest can be performed with the acupuncture injection method on a glass microchip while minimizing sample loss and voltage control hardware.  相似文献   

13.
The use of a poly(methylmethacrylate) capillary electrophoresis chip, provided with a high sample load capacity separation system (a 8500 nL separation channel coupled to a 500 nL sample injection channel) and a pair of on-chip conductivity detectors, for zone electrophoresis (ZE) determination of oxalate in urine was studied. Hydrodynamic and electroosmotic flows of the solution in the separation compartment of the chip were suppressed and electrophoresis was a dominant transport process in the separations performed on the chip. A low pH of the carrier electrolyte (4.0) provided an adequate selectivity in the separation of oxalate from anionic urine constituents and, at the same time, also a sufficient sensitivity in its conductivity detection. Under our working conditions, this anion could be detected at a 8 x 10(-8) mol/L concentration also in samples containing chloride (a major anionic constituent of urine) at 3.5 x 10(-3) mol/L concentrations. Such a favorable analyte/matrix concentration ratio (in part, attributable to a transient isotachophoresis stacking in the initial phase of the separation) made possible accurate and reproducible (typically, 2-5% relative standard deviation (RSD) values of the peak areas of the analyte in dependence on its concentration in the sample) determination of oxalate in 500 nL volumes of 20-100-fold diluted urine samples. Short analysis times (about 280 s), no sample pretreatment (not considering urine dilution) and reproducible migration times of this analyte (0.5-1.0% RSD values) were characteristic for ZE on the chip. This work indicates general potentialities of the present chip design in rapid ZE analysis of samples containing the analyte(s) at high ionic matrix/analyte concentration ratios.  相似文献   

14.
Yang S  Liu J  DeVoe DL 《Lab on a chip》2008,8(7):1145-1152
Multidimensional microfluidic separation systems combining a first dimension microchannel with an array of parallel second dimension microchannels can suffer from non-uniform sample transfer between the dimensions, sample leakage, and injection plug tailing within the second dimension array. These factors can significantly reduce overall two-dimensional separation performance. In this paper, numerical and analytical models reveal an optimized chip design which combines multidimensional backbiasing and an angled channel geometry to ensure leakage-free and uniform interdimensional sample transfer, while also minimizing injected sample plug lengths. The optimized design is validated experimentally using a multidimensional chip containing five second dimension channels.  相似文献   

15.
The application of microfabricated devices coupled to a quadrupole time-of-flight mass spectrometer (Qq-TOF-MS) is presented for the analysis of trace level digests of gel-isolated proteins. In order to enhance the sample loading for proteomics analyses, two different on-chip sample preconcentration techniques were evaluated. First, a sample stacking procedure that used polarity switching to remove the sample buffer prior to zone electrophoresis was easily integrated on the microfabricated devices. With the present chip design, this preconcentration technique provided up to 70 nL sample injection with sub-nM detection limits for most peptide standards. For applications requiring larger sample loading, a disposable adsorption preconcentrator using a C18 membrane is incorporated outside the chip. This preconcentration method yielded lower peptide recoveries than that obtainable with sample stacking, and provided a convenient means of injecting several microL of sample with detection limits of typically 2.5 nM for hydrophobic peptides. The analytical merits of both sample enrichment approaches are described for the identification of bands isolated from two-dimensional (2-D) gel separation of protein extracts from Haemophilus influenzae. Accurate molecular mass measurements (< 5 ppm) in peptide mapping experiments is obtained by introducing an internal standard via a post-separation channel. Rapid identification of trace level peptides is also demonstrated using on-line tandem mass spectrometry and database searching with peptide sequence tags.  相似文献   

16.
Sample pre-concentration by isotachophoresis in microfluidic devices   总被引:1,自引:0,他引:1  
We have designed microfluidic devices with the aim of coupling isotachophoresis (ITP) with zone electrophoresis (ZE) as a method to increase the concentration limit of detection in microfluidic devices. We used plastic multi-channel chips, designed with long sample injection channel segments, to increase the sample loading. The chip was designed to allow stacking of the sample into a narrow band by discontinuous ITP buffers and subsequent separation in the ZE mode. In the ITP-ZE mode, with a 2-cm long sample injection plug, sensitivity was increased by 400-fold over chip ZE and we found that the separation performance after the ITP stacking was comparable to that of regular chip ZE. We report sub-picomolar limits of detection of fluorescently labeled ACLARA eTag reporter molecules electrokinetically injected from cell lysate sample matrixes containing moderate salt concentrations. We evaluated sample injections from buffers with varied ionic strengths and found that efficient stacking and separations were obtained in both low and high conductivity buffers, including physiological buffer with at least 140 mM salt. We applied ITP-ZE to the analysis of a cell surface protease (ADAM 17) which used live intact cells in physiological buffers with detection limits below 10 cells/assay.  相似文献   

17.
Wu ZY  Fang F  Josserand J  Girault HH 《Electrophoresis》2007,28(24):4612-4619
On-column conductivity detection in capillary-chip electrophoresis was achieved by actively coupling the high electric field with two sensing electrodes connected to the main capillary channel through two side detection channels. The principle of this concept was demonstrated by using a glass chip with a separation channel incorporating two double-Ts. One double-T was used for sample introduction, and the other for detection. The two electrophoresis electrodes apply the high voltage and provide the current, and the two sensing electrodes connected to the separation channel through the second double-T and probe a potential difference. This potential difference is directly related to the local resistance or the conductivity of the solution defined by the two side channels on the main separation channel. A detection limit of 15 microM (600 ppb or 900 fg) was achieved for potassium ion in a 2 mM Tris-HCl buffer (pH 8.7) with a linear range of 2 orders of magnitude without any stacking. The proposed detection method avoids integrating the sensing electrodes directly within the separation channel and prevents any direct contact of the electrodes with the sample. The baseline signal can also be used for online monitoring of the electric field strength and electroosmosis mobility characterization in the separation channel.  相似文献   

18.
We have evaluated double-stranded DNA separations in microfluidic devices which were designed to couple a sample preconcentration step based on isotachophoresis (ITP) with a zone electrophoretic (ZE) separation step as a method to increase the concentration limit of detection in microfluidic devices. Developed at ACLARA BioSciences, these LabCard trade mark devices are plastic 32 channel chips, designed with a long sample injection channel segment to increase the sample loading. These chips were designed to allow stacking of the sample into a narrow band using discontinuous ITP buffers, and subsequent separation in the ZE mode in sieving polymer solutions. Compared to chip ZE, the sensitivity was increased by 40-fold and we showed baseline resolution of all fragments in the PhiX174/HaeIII DNA digest. The total analysis time was 3 min/sample, or less than 100 min per LabCard device. The resolution for multiplexed PCR samples was the same as obtained in chip ZE. The limit of detection was 9 fg/microL of DNA in 0.1xpolymerase chain reaction (PCR) buffers using confocal fluorescence detection following 488 nm laser excitation with thiazole orange as the fluorescent intercalating dye.  相似文献   

19.
We developed a novel single‐step capillary electrophoresis (SSCE) scheme for miniaturized and easy to use system by using a microchannel chip, which was made from the hydrophilic material polymethyl methacrylate (PMMA), equipped with a capillary stop valve. Taking the surface tension property of liquids into consideration, the capillary effect was used to introduce liquids and control capillary stop valves in a partial barrier structure in the wall of the microchannel. Through the combined action of stop valves and air vents, both sample plug formation for electrophoresis and sample injection into a separation channel were successfully performed in a single step. To optimize SSCE, different stop valve structures were evaluated using actual microchannel chips and the finite element method with the level set method. A partial barrier structure at the bottom of the channel functioned efficiently as a stop valve. The stability of stop valve was confirmed by a shock test, which was performed by dropping the microchannel chip to a floor. Sample plug deformation could be reduced by minimizing the size of the side partial barrier. By dissolving hydroxyl ethyl cellulose and using it as the sample solution, the EOF and adsorption of the sample into the PMMA microchannel were successfully reduced. Using this method, a 100‐bp DNA ladder was concentrated; good separation was observed within 1 min. At a separation length of 5 mm, the signal was approximately 20‐fold higher than a signal of original sample solution by field‐amplified sample stacking effect. All operations, including liquid introduction and sample separation, can be completed within 2 min by using the SSCE scheme.  相似文献   

20.
Sinton D  Ren L  Xuan X  Li D 《Lab on a chip》2003,3(3):173-179
As an increasing number of processes are being integrated into Lab-on-a-chip devices, there is an increasing need for flexible and accurate sample manipulation techniques for effective transport and separation. Conductivity differences between running buffer and analyte samples can arise as a product of on-chip processing, or by design. The two situations studied here are sample pumping (where bulk transport is increased and separation of charged analytes is delayed using a relatively high conductivity sample), and sample stacking (where bulk transport is decreased and separation of charged analytes is expedited using a relatively low conductivity sample). A recently developed dynamic loading method for on-chip sample injection in a straight-cross channel configuration is applied here to both pumping and stacking cases. A key characteristic of the dynamic loading method is the ability to inject samples of high concentration density and uniformity of any length. By employing the conductivity differences alone, the effectiveness of either sample transport or sample separation are shown to improve over the uniform conductivity case. Then it is demonstrated that increasing the sample length, through dynamic loading, greatly increases the effectiveness of sample pumping, evidenced in an eight-fold increase in peak height as well as a decrease in total sample length at a downstream detector. Dynamic loading in the sample stacking case was shown to also increase peak intensity height (three-fold) in rapid separations. These results demonstrate that the dynamic loading technique, used in conjunction with strategic conductivity differences, significantly extends the capabilities of microfluidic chips.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号