首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
We consider a two-echelon, continuous review inventory system under Poisson demand and a one-for-one replenishment policy. Demand is lost if no items are available at the local warehouse, the central depot, or in the pipeline in between. We give a simple, fast and accurate approach to approximate the service levels in this system. In contrast to other methods, we do not need an iterative analysis scheme. Our method works very well for a broad set of cases, with deviations to simulation below 0.1% on average and below 0.36% for 95% of all test instances.  相似文献   

3.
We study inventory systems with two demand classes (critical and non-critical), Poisson demand and backordering. We analyze dynamic rationing strategies where the number of items reserved for critical demand depends on the remaining time until the next order arrives. Different from results in the literature, we do not discretize demand but derive a set of formulae that determine the optimal rationing level for any possible value of the remaining time. Moreover, we show that the cost parameters can be captured in a single relevant dimension, which allows us to present the optimal rationing levels in charts and lookup tables that are easy to implement. Numerical examples illustrate that the optimal dynamic rationing strategy outperforms all static strategies with fixed rationing levels.  相似文献   

4.
In almost all literature on inventory models with lost sales and periodic reviews the lead time is assumed to be either an integer multiple of or less than the review period. In a lot of practical settings such restrictions are not satisfied. We develop new models allowing constant lead times of any length when demand is compound Poisson. Besides an optimal policy, we consider pure and restricted base-stock policies under new lead time and cost circumstances. Based on our numerical results we conclude that the latter policy, which imposes a restriction on the maximum order size, performs almost as well as the optimal policy. We also propose an approximation procedure to determine the base-stock levels for both policies with closed-form expressions.  相似文献   

5.
In this paper we consider a one-warehouse N-retailer inventory system characterized by access to real-time point-of-sale data, and a time based dispatching and shipment consolidation policy at the warehouse. More precisely, inventory is reviewed continuously, while a consolidated shipment (for example, a truck) to all retailers is dispatched from the warehouse at regular time intervals. The focus is on investigating the cost benefits of using state-dependent myopic allocation policies instead of a simple FCFS (First-Come-First-Serve) rule to allocate shipped goods to the retailers. The analysis aims to shed some light on when, if ever, FCFS is a reasonable policy to use in this type of system? The FCFS allocations of items to retailers are determined by the sequence in which retailer orders (or equivalently customer demands) arrive to the warehouse. Applying the myopic policy enables the warehouse to postpone the allocation decision to the moment of shipment (from the warehouse) or the moments of delivery (to the different retailers), and to base it on the inventory information available at those times. The myopic allocation method we study is often used in the literature on periodic review systems.  相似文献   

6.
Besides service level and mean physical stock, customer waiting time is an important performance characteristic for an inventory system. In this paper we discuss the calculation of this waiting time in case a periodic review control policy with order-up-to-levelS is used and customers arrive according to a Poisson process. For the case of Gamma distributed demand per customer, we obtain (approximate) expressions for the waiting time characteristics. The approach clearly differs from the traditional approaches. It can also be used to obtain other performance characteristics such as the mean physical stock and the service level.  相似文献   

7.
Previously it has been shown that some classes of mixing dynamical systems have limiting return times distributions that are almost everywhere Poissonian. Here we study the behaviour of return times at periodic points and show that the limiting distribution is a compound Poissonian distribution. We also derive error terms for the convergence to the limiting distribution. We also prove a very general theorem that can be used to establish compound Poisson distributions in many other settings.  相似文献   

8.
In this paper we show how to exactly evaluate holding and shortage costs for a two-level inventory system with one warehouse and N different retailers. Lead-times (transportation times) are constant, and the retailers face different Poisson demand processes. All facilities apply continuous review (R, Q)-policies. We express the policy costs as a weighted mean of costs for one-for-one ordering policies.  相似文献   

9.
10.
We consider a multi-item two-echelon spare part inventory system in which the central warehouse operates under an (nQ,?R) policy and the local warehouses implement order-up-to S policy, each facing a compound Poisson demand. The objective is to find the policy parameters minimizing expected system-wide inventory holding and fixed ordering costs subject to an aggregate mean response time constraint at each warehouse. In this paper, we propose four alternative approximations for the steady state performance of the system; and extend a heuristic and a lower bound proposed under Poisson demand assumption to the compound Poisson setting. In a computational study, we show that the performances of the approximations, the heuristic, and the lower bound are quite satisfactory; and the relative cost saving of setting an aggregate service level rather than individually for each part is quite high.  相似文献   

11.
12.
This paper presents an approximation model for optimizing reorder points in one-warehouse N-retailer inventory systems subject to highly variable lumpy demand. The motivation for this work stems from close cooperation with a supply chain management software company, Syncron International, and one of their customers, a global spare parts provider. The model heuristically coordinates the inventory system using a near optimal induced backorder cost at the central warehouse. This induced backorder cost captures the impact that a reorder point decision at the warehouse has on the retailers’ costs, and decomposes the multi-echelon problem into solving N + 1 single-echelon problems. The decomposition framework renders a flexible model that is computationally and conceptually simple enough to be implemented in practice.  相似文献   

13.
《Optimization》2012,61(2):275-289
A detailed analysis of inventory models without setup costs, arbitrary demand distribution and arbitrary demand and cost pattern is given. First it is shown that the corresponding one-period model without ordering costs may be reduced to another simpler one with appropriately modified demand distribution. Several representations are given for the modified demand distribution. As one of the main results this reduction turns out to be robust in most cases. In a final chapter the results are applied to the determination of an optimal policy for a class of N-period inventory models with convex holding-and shortage costs and without setup costs.  相似文献   

14.
《Optimization》2012,61(4):557-576
Stochastic Inventory systems of (s, S) type with general lead time distribution are studied when the time intervals between successive demands are independently and identically distributed. The demands are assumed to occur for one unit at a time and the quantity reordered is subject to review at the epoch of replenishment so as to level up the inventory to S. An explicit characterization of the inventory level is provided. The model is flexible enough to allow complete backlogging and or deal with shortages. A general method of dealing with cost over an arbitrary time interval is indicated. Special cases are discussed when either the lead time or the interval between successive demands is exponentially distributed.  相似文献   

15.
We consider a multi-product and multi-component Assemble-to-Order (ATO) system where the external demand follows compound Poisson processes and component inventories are controlled by continuous-time batch ordering policies. The replenishment lead-times of components are stochastic, sequential and exogenous. Each element of the bill of material (BOM) matrix can be any non-negative integer. Components are committed to demand on a first-come-first-serve basis. We derive exact expressions for key performance metrics under either the assumption that each demand must be satisfied in full (non-split orders), or the assumption that each unit of demand can be satisfied separately (split orders). We also develop an efficient sampling method to estimate these metrics, e.g., the expected delivery lead-times and the order-based fill-rates. Based on the analysis and a numerical study of an example motivated by a real world application, we characterize the impact of the component interaction on system performance, demonstrate the efficiency of the numerical method and quantify the impact of order splitting.  相似文献   

16.
This paper addresses a practical liner ship fleet deployment problem with week-dependent container shipment demand and transit time constraint, namely, maximum allowable transit time in container routing between a pair of ports. It first uses the space–time network approach to generate practical container routes subject to the transit time constraints. This paper proceeds to formulate the fleet deployment problem based on the practical container routes generated. In view of the intractability of the formulation, two relaxation models providing lower bounds are built: one requires known container shipment demand at the fleet deployment stage, and the other assumes constant container shipment demand over the planning horizon. An efficient global optimization algorithm is subsequently proposed. Extensive numerical experiments on the shipping data of a global liner shipping company demonstrate the applicability of the proposed model and algorithm.  相似文献   

17.
In this paper, we determine the optimal order policies for a firm facing random demand and random deal offerings. In a periodic review setting, a firm may first place an order at the regular price. Later in the period, if a price promotion is offered by the supplier (with a certain probability), the firm may decide to place another order. We consider two models in the paper. In the first model, the firm does not share the cost savings (due to the promotion offered by the supplier) with its own customers, i.e. its demand distribution remains fixed. In the second model, the cost savings are shared with the final customers. As a result, the demand distribution shifts to the right. For both the models, in a dynamic finite-horizon problem, the order policy structure is divided into three regions and is as follows. If the initial inventory level for the firm exceeds a certain threshold level, it is optimal not to order anything. If it is in the medium range, it is optimal to wait for the promotion and order only if it is offered. The order quantity when the promotion is offered has an ‘order up to’ policy structure. Finally, if the inventory level is below another threshold, it is optimal to place an order at the regular price, and to place a second order if the promotion is offered. The low initial inventory level makes it risky to just wait for the promotion to be offered. The sum of the order quantities in this case has an ‘order up to’ structure. Finally, we model the supplier's problem as a Stackelberg game and discuss the motivation for the supplier to offer a promotion for the case of uniform demand distribution for the firm. In the first model (when the firm does not share the cost savings with its customers), we show that it is rarely optimal for the supplier to offer a promotion. In the second model, the supplier may offer a promotion depending on the price elasticity of the product.  相似文献   

18.
We evaluate the benefits of coordinating capacity and inventory decisions in a make-to-stock production environment. We consider a firm that faces multi-class demand and has additional capacity options that are temporary and randomly available. We formulate the model as a Markov decision process (MDP) and prove that a solution to the optimal joint control problem exists. For several special cases we characterize the structure of the optimal policy. For the general case, however, we show that the optimal policy is state-dependent, and in many instances non-monotone and difficult to implement. Therefore, we consider three pragmatic heuristic policies and assess their performance. We show that the majority of the savings originate from the ability to dynamically adjust capacity, and that a simple heuristic that can adjust production capacity (based on workload fluctuation) but uses a static production/rationing policy can result in significant savings.  相似文献   

19.
Inventory control is especially difficult when demand is stochastic and nonstationary. We consider a spare part inventory control problem with multiple-period replenishment lead time, and describe a static-dynamic strategy for the problem. By solving a static-dynamic uncertainty model, the strategy first makes decisions on the replenishment periods and order-up-to-levels over the planning horizon, but implements only the decisions of the first period. It then uses the rolling horizon approach in the next period when the inventory status is revised, and the multi-period problem is updated as better forecasts become available. In light of structural property of the developed static-dynamic uncertainty model, the optimal solution to the model can be obtained without much computational effort and thus the strategy can be easily implemented. Computational experiments and result of a case study verify the efficacy of the proposed strategy.  相似文献   

20.
This paper considers continuous-review lost-sales inventory models with no fixed order cost and a Poisson demand process. There is a holding cost per unit per unit time and a lost sales cost per unit. The objective is to minimise the long run total cost. Base stock policies are, in general, sub-optimal under lost sales. The optimal policy would have to take full account of the remaining lead times on all the orders currently outstanding and such a policy would be too complex to analyse, let alone implement. This paper considers policies which make use of the observation that, for lost sales models, base stock policies can be improved by imposing a delay between the placement of successive orders. The performance of these policies is compared with that of the corresponding base stock policy and also with the policy of ordering at fixed and regular intervals of time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号