首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The concern about significant changes in the business environment (such as customer demands and transportation costs) has spurred an interest in designing scalable and robust supply chains. This paper proposes a robust optimization model for handling the inherent uncertainty of input data in a closed-loop supply chain network design problem. First, a deterministic mixed-integer linear programming model is developed for designing a closed-loop supply chain network. Then, the robust counterpart of the proposed mixed-integer linear programming model is presented by using the recent extensions in robust optimization theory. Finally, to assess the robustness of the solutions obtained by the novel robust optimization model, they are compared to those generated by the deterministic mixed-integer linear programming model in a number of realizations under different test problems.  相似文献   

2.
We consider the uncertain least cost shipping problem. The input is a multi-item supply chain network with time-evolving uncertain costs and capacities. Exploiting the operational law of uncertainty theory, a mathematical model of the problem is established and the indeterminacy factors are tackled. We use the scaling idea together with transformation approach and uncertainty programming to develop a hybrid algorithm to optimize and obtain the uncertainty distribution of the total shipping cost. We analyze the practical performance of the algorithm and present an illustrative example.  相似文献   

3.
We consider in this paper a two echelon timber procurement system in which the first echelon consists of multiple harvesting blocks and the second echelon consists of multiple mills (e.g., sawmills), both distributed geographically. Demand is put forward by mills in the form of volumes of logs of specific length and species. Due to the impact of log handling and sorting on cut-to-length harvester and forwarder productivity [Gingras, J.-F., Favreau, J., 2002. Incidence du triage sur la productivité des systèmes par bois tronçonnés. Avantage 3], the harvesting cost per unit volume increases as the number of product variety harvested per block increases. The overall product allocation problem is a large scale mixed integer programming problem with the objective of minimizing combined harvesting and aggregated transportation costs, under demand satisfaction constraints. A heuristic is first introduced then, an algorithm based on the branch-and-price approach is proposed for larger scale problems. Experimentations compare solutions found with the heuristic with the corresponding optimal solutions obtained with both Cplex (using the branch-and-bound approach) and the branch-and-price approach. Results demonstrate the good performance level of the heuristic approach for small scale problems, and of the branch-and-price approach for large scale problems.  相似文献   

4.
The optimization of supply chain structures considering both economic and environmental performances is nowadays an important research topic. However, enterprises are commonly faced with the competing issues of reduced cost, improved customer service and increased environmental factors as a multi-faceted trade-off problem when designing supply chains. Hence, this paper proposes an environmentally conscious optimization model of a supply chain network with a broader and more comprehensive objective function that considers not just the transportation costs, but also the costs for the amount of greenhouse gas emissions, fuel consumption, transportation times, noise and road roughness. The paper sheds light on the trade-offs between various parameters such as vehicle speed, fuel, time, emissions, noise and their total cost, and offers managerial insights on economies of environmentally conscious supply chain optimization. An integer non-linear programming model is developed to help decision makers find the optimal solution under mentioned considerations. The proposed model is validated through the solution of an example, where its applicability to supply chain problems is demonstrated for managerial insights.  相似文献   

5.
This paper expands previous work dealing with oligopolistic supply chains to the field of closed-loop supply chains. The model presented has been formulated with the intent of examining issues surrounding the recent European Union directive regarding waste of electric and electronic equipment (WEEE). The network modelled consists of manufacturers and consumer markets engaged in a Cournot pricing game with perfect information. Closed-loop supply chain network equilibrium occurs when all players agree on volumes shipped and prices charged. Certain properties of the model are examined analytically. Numeric examples are included and have been solved using an extragradient method with constant step size. The equilibrium solution obtained provide interesting insights that lead into a number of areas for future research.  相似文献   

6.
This paper considers an integrated service network design problem for a given set of freight demands that is concerned with integration of locating cross-docking (CD) centers and allocating vehicles for the associated direct (transportation) services from origin node to a CD center or from a CD center to the destination node. For the vehicle allocation, direct services (sub-routes) should be determined for the given freight demands, and then the vehicle allocation has to be made in consideration of routing for the associated direct service fulfillment subject to vehicle capacity and service time restriction. The problem is modeled as a path-based formulation for which a tabu-search-based solution algorithm is proposed. To guarantee the performance of the proposed solution algorithm, strong valid inequalities are derived based on the polyhedral characteristics of the problem domain and an efficient separation heuristic is derived for identifying any violated valid inequalities. Computational experiments are performed to test the performance of the proposed solution algorithm and also that of a valid-inequality separation algorithm, which finds that the solution algorithm works quite well and the separation algorithm provides strengthened lower bounds. Its immediate application may be made to strategic (integrated) service network designs and to tactical service network planning for the CD network.  相似文献   

7.
8.
Successful supply chain management requires a cooperative integration between all the partners in the network. At the operational level, the partners individual behavior should be optimal and therefore their activities have to be planned using sophisticated optimization tools. However, these tools should take into account the planning of the remaining partners, through the exchange of information, in order to allow some kind of cooperation between the elements of the chain. This paper introduces a new supply chain management technique, based on modeling a generic supply chain with suppliers, logistics and distributers, as a distributed optimization problem. The different operational activities are solved by the optimization meta-heuristic called ant colony optimization, which allows the exchange of information between different optimization problems by means of a pheromone matrix. The simulation results show that the new methodology is more efficient than a simple decentralized methodology for different instances of a supply chain.  相似文献   

9.
Supply chain simulation models are widely used for assessing supply chain performance and analyzing supply chain decisions. In combination with derivative-  相似文献   

10.
In this paper, a supply chain is represented as a two-input, three-stage queuing network. An input order to the supply chain is represented by two stochastic variables, one for the occurrence time and the other for the quantity of items to be delivered in each order. The objective of this paper is to compute the minimum response time for the delivery of items to the final destination along the three stages of the network. The average number of items that can be delivered with this minimum response time constitute the optimum capacity of the queuing network. After getting serviced by the last node (a queue and its server) in each stage of the queuing network, a decision is made to route the items to the appropriate node in the next stage which can produce the least response time.  相似文献   

11.
《Applied Mathematical Modelling》2014,38(15-16):4099-4119
The more common approaches used in the SCM consider only the physical logistic operations and ignore the financial aspects of the chain. This paper presents a financial approach to model a closed-loop supply chain design in which financial aspects are explicitly considered as exogenous variables. The model decides to determine the strategic decisions as well as the tactical decisions. The main contribution of this paper is to incorporate the financial aspects (i.e. current and fixed assets and liabilities) and a set of budgetary constraints representing balances of cash, debt, securities, payment delays, and discounts in the supply chain planning. Moreover, the financial approach applies the change in equity (instead of the measure of profit/cost in traditional approaches) as the objective function to be optimized in the presented model.To show the advantages of the presented approach, the results attributed to the financial approach and the traditional approach are compared, where the latter firstly decides on operations and fits finances afterwards. The results indicate that the traditional approach leads to lower change in equity compared to the financial approach. This fact illustrates the inadequacy of treating process operations and finances in isolated environments and pursuing as objective myopic performance indicators such as profit or cost. Moreover, a sensitivity analysis of the parameters using ANOVA for different levels of the parameters under different customer order patterns is performed to enhance the managerial insights of the study. The results clearly reveal the better improvement of using the financial approach over the traditional approach, and convince the decision makers to take advantage of the proposed approach.  相似文献   

12.
We propose a novel robust optimization approach to analyze and optimize the expected performance of supply chain networks. We model uncertainty in the dema  相似文献   

13.
The concern about environmental impact of business activities has spurred an interest in designing environmentally conscious supply chains. This paper proposes a multi-objective fuzzy mathematical programming model for designing an environmental supply chain under inherent uncertainty of input data in such problem. The proposed model is able to consider the minimization of multiple environmental impacts beside the traditional cost minimization objective to make a fair balance between them. A life cycle assessment-based (LCA-based) method is applied to assess and quantify the environmental impact of different options for supply chain network configuration. Also, to solve the proposed multi-objective fuzzy optimization model, an interactive fuzzy solution approach is developed. A real industrial case is used to demonstrate the significance and applicability of the developed fuzzy optimization model as well as the usefulness of the proposed solution approach.  相似文献   

14.
We study the supply chain tactical planning problem of an integrated furniture company located in the Province of Québec, Canada. The paper presents a mathematical model for tactical planning of a subset of the supply chain. The decisions concern procurement, inventory, outsourcing and demand allocation policies. The goal is to define manufacturing and logistics policies that will allow the furniture company to have a competitive level of service at minimum cost. We consider planning horizon of 1 year and the time periods are based on weeks. We assume that customer’s demand is known and dynamic over the planning horizon. Supply chain planning is formulated as a large mixed integer programming model. We developed a heuristic using a time decomposition approach in order to obtain good solutions within reasonable time limit for large size problems. Computational results of the heuristic are reported. We also present the quantitative and qualitative results of the application of the mathematical model to a real industrial case.  相似文献   

15.
Supply chain management (SCM) in semiconductor manufacturing differs from many other SCM applications in that it has to simultaneously consider both long and short time scale stochasticity and nonlinearity. We present a two-level hierarchical structure for SCM motivated by these considerations. A linear programming (LP)-based strategic planning module forms the outer loop which makes long timescale decisions on the starts of factories. A model predictive control (MPC) based tactical execution module forms the inner loop which generates short timescale decisions on the starts of factories by considering the stochasticity and nonlinearity on both supply and demand sides. Two representative case studies are examined under diverse realistic conditions with this integrated framework. It is demonstrated that given conditions of stochasticity, nonlinearity, and forecast error this hierarchical decision structure can be tuned to manage representative semiconductor manufacturing supply chains in a manner appealing to operations. This work was supported by grants from the Intel Research Council and the National Science Foundation (CMMI-0432429).  相似文献   

16.
This study applies fuzzy sets to integrate the supply chain network of an edible vegetable oils manufacturer. The proposed fuzzy multi-objective linear programming model attempts to simultaneously minimize the total transportation costs. The first part of the total transportation costs is between suppliers and silos; and rest one is between manufacturer and warehouses. The approach incorporates all operating realities and actual flow patterns at production/distribution network with reference to demands of warehouses, capacities of tin and pet packaging lines. The model has been formulated as a multi objective linear programming model where data are modeled by triangular fuzzy numbers. Finally, the developed fuzzy model is applied for the case study, compiled the results and discussed.  相似文献   

17.
We present a profit-maximizing supply chain design model in which a company has flexibility in determining which customers to serve. The company may lose a customer to competition if the price it charges is too high. We show the problem formulation and solution algorithm, and discuss computational results.  相似文献   

18.
Forward and reverse supply chains form a closed-loop supply chain. In this paper, a mathematical model is proposed for a closed-loop supply chain network by considering global factors, including exchange rates and customs duties. The model is a multi-objective mixed-integer linear programming model under uncertain demand. A solution approach based on fuzzy programming is developed for solving the optimization problem. The model is then applied in a network, which is located in Southwestern Ontario, Canada. A sensitivity analysis is provided to validate the model. This model considers global factors, multi-objectives, and uncertainty simultaneously in a closed-loop supply chain network.  相似文献   

19.
This paper proposes a stochastic programming model and solution algorithm for solving supply chain network design problems of a realistic scale. Existing approaches for these problems are either restricted to deterministic environments or can only address a modest number of scenarios for the uncertain problem parameters. Our solution methodology integrates a recently proposed sampling strategy, the sample average approximation (SAA) scheme, with an accelerated Benders decomposition algorithm to quickly compute high quality solutions to large-scale stochastic supply chain design problems with a huge (potentially infinite) number of scenarios. A computational study involving two real supply chain networks are presented to highlight the significance of the stochastic model as well as the efficiency of the proposed solution strategy.  相似文献   

20.
This paper proposes a branch-and-price algorithm as an exact algorithm for the cross-docking supply chain network design problem introduced by one of the authors of this paper. The objective is to optimally locate cross-docking (CD) centres and allocate vehicles for direct transportation services from the associated origin node to the associated CD centre or from the associated CD centre to the associated destination node so as to satisfy a given set of freight demands at minimum cost subject to the associated service (delivery) time restriction. A set-partitioning-based formulation is derived for the problem for which some solution properties are characterized. Based on the properties, a branch-and-price algorithm is derived. The properties can also be used in deriving any efficient local search heuristics with the move operation (neighbourhood search operation) of modifying assignment of some freight demands from current CD centres to other CD centres. Computational experiments show that the branch-and-price algorithm is effective and efficient and also that the solution properties contribute to improve the efficiency of the local search heuristics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号