首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Ropinirole hydro­chloride, or diethyl[2‐(2‐oxo‐2,3‐dihydro‐1H‐indol‐4‐yl)ethyl]ammonium chloride, C16H25N2O+·Cl, belongs to a class of new non‐ergoline dopamine agonists which bind specifically to D2‐like receptors with a selectivity similar to that of dopamine (D3 > D2 > D4). The N atom in the ethyl­amine side chain is protonated and there is a hydrogen bond between it and the Cl ion. In the crystal structure, two cations and two anions form inversion‐related cyclic dimers via N—H⋯Cl hydrogen bonds.  相似文献   

2.
Dorzolamide hydro­chloride [systematic name: (4S)‐trans‐4‐ethyl­ammonio‐6‐methyl‐5,6‐dihydro‐4H‐thieno[2,3‐b]thio­pyran‐2‐sulfonamide 7,7‐dioxide chloride], C10H17N2O4S2+·Cl, belongs to a class of drugs called carbonic anhydrase inhibitors. The ethyl­ammonio side chain is in an extended conformation and is protonated at the N atom, which is hydrogen bonded to the Cl anion. The dihedral angle between the planes of the thio­phene ring and the sulfonamide group is 80.7 (1)°. A comparison is made with the dorzolamide bound in human carbonic anhydrase in the solid state. Hydrogen bonding is mediated by Cl anions, resulting in indirect connectivity between the mol­ecules.  相似文献   

3.
The crystal structures of 8‐phenoxycarbonyl‐1,8‐diazabicyclo[5.4.0]undec‐7‐enium chloride, C16H21N2O2+·Cl, (I), and 8‐methoxycarbonyl‐1,8‐diazabicyclo[5.4.0]undec‐7‐enium chloride monohydrate, C11H19N2O2+·Cl·H2O, (II), recently reported by Carafa, Mesto & Quaranta [Eur. J. Org. Chem. (2011), pp. 2458–2465], are analysed and discussed with a focus on crystal interaction assembly. Both compounds crystallize in the space group P21/c. The crystal packings are characterized by dimers linked through π–π stacking interactions and intermolecular nonclassical hydrogen bonds, respectively. Additional intermolecular C—H...Cl interactions [in (I) and (II)] and classical O—H...Cl hydrogen bonds [in (II)] are also evident and contribute to generating three‐dimensional hydrogen‐bonded networks.  相似文献   

4.
The crystal structures of the title compounds, (S)‐1‐carboxy‐3‐(methyl­sulfanyl)­propanaminium chloride, C5H12NO2S+·Cl, and (S)‐1‐carboxy‐3‐(methyl­selanyl)­propanaminium chloride, C5H12NO2Se+·Cl, are isomorphous. The proton­ated l ‐methionine and l ‐seleno­methionine mol­ecules have almost identical conformations and create very similar contacts with the Cl anions in the crystal structures of both compounds. The amino acid cations and the Cl anions are linked viaN—H⋯Cl and O—H⋯Cl hydrogen bonds.  相似文献   

5.
In lamotrigine [systematic name: 6‐(2,3‐dichlorophenyl)‐1,2,4‐triazine‐3,5‐diamine], C9H7Cl2N5, (I), the asymmetric unit contains one lamotrigine base molecule. In lamotriginium chloride [systematic name: 3,5‐diamino‐6‐(2,3‐dichlorophenyl)‐1,2,4‐triazin‐2‐ium chloride], C9H8Cl2N5+·Cl, (II), the asymmetric unit contains one lamotriginium cation and one chloride anion, while in lamotriginium nitrate, C9H8Cl2N5+·NO3, (III), the asymmetric unit contains two crystallographically independent lamotriginium cations and two nitrate anions. In all three structures, N—H...N hydrogen bonds form an R22(8) dimer. In (I) and (II), hydrophilic layers are sandwiched between hydrophobic layers in the crystal packing. In all three structures, hydrogen bonds lead to the formation of a supramolecular hydrogen‐bonded network. The significance of this study lies in its illustration of the differences between the supramolecular aggregation in the lamotrigine base and in its chloride and nitrate salts.  相似文献   

6.
The title compound anilinium chloride–4‐bromo‐N‐phenyl­benzene­sulfonamide (1/1), C6H8N+·Cl·C12H10BrNO2S, displays a hydrogen‐bonded ladder motif with four independent N—H⋯Cl bonds in which both the NH group of the sulfonamide molecule and the NH3 group of the anilinium ion [N⋯Cl = 3.135 (3)–3.196 (2) Å and N—H⋯Cl = 151–167°] are involved. This hydrogen‐bonded chain contains two independent R42(8) rings and each chloride ion acts as an acceptor of four hydrogen bonds.  相似文献   

7.
Nimustine hydrochloride [systematic name: 4‐amino‐5‐({[N‐(2‐chloroethyl)‐N‐nitrosocarbamoyl]amino}methyl)‐2‐methylpyrimidin‐1‐ium chloride], C9H14ClN6O2+·Cl, is a prodrug of CENU (chloroethylnitrosourea) and is used as a cytostatic agent in cancer therapy. Its crystal structure was determined from laboratory X‐ray powder diffraction data. The protonation at an N atom of the pyrimidine ring was established by solid‐state NMR spectroscopy.  相似文献   

8.
The crystal structures of two (E)‐stilbazolium salts, namely 1‐(2‐chlorobenzyl)‐4‐[(E)‐2‐(3‐hydroxyphenyl)ethenyl]pyridinium chloride hemihydrate, C20H17ClNO+·Cl·0.5H2O, (I), and 1‐(2‐bromobenzyl)‐4‐[(E)‐2‐(3‐hydroxyphenyl)ethenyl]pyridinium bromide hemihydrate, C20H17BrNO+·Br·0.5H2O, (II), are isomorphous; the isostructurality index is 99.3%. In both salts, the azastyryl fragments are almost planar, while the rings of the benzyl groups are almost perpendicular to the azastyryl planes. The building blocks of the structures are twofold symmetric hydrogen‐bonded systems of two cations, two halide anions and one water molecule, which lies on a twofold axis. In the crystal structure, these blocks are connected by means of weaker interactions, viz. van der Waals, weak hydrogen bonding and stacking. This study illustrates the robustness of certain supramolecular motifs created by a spectrum of intermolecular interactions in generating these isomorphous crystal structures.  相似文献   

9.
Proton transfer to the sulfa drug sulfadiazine [systematic name: 4‐amino‐N‐(pyrimidin‐2‐yl)benzenesulfonamide] gave eight salt forms. These are the monohydrate and methanol hemisolvate forms of the chloride (2‐{[(4‐azaniumylphenyl)sulfonyl]azanidyl}pyrimidin‐1‐ium chloride monohydrate, C10H11N4O2S+·Cl·H2O, (I), and 2‐{[(4‐azaniumylphenyl)sulfonyl]azanidyl}pyrimidin‐1‐ium chloride methanol hemisolvate, C10H11N4O2S+·Cl·0.5CH3OH, (II)); a bromide monohydrate (2‐{[(4‐azaniumylphenyl)sulfonyl]azanidyl}pyrimidin‐1‐ium bromide monohydrate, C10H11N4O2S+·Br·H2O, (III)), which has a disordered water channel; a species containing the unusual tetraiodide dianion [bis(2‐{[(4‐azaniumylphenyl)sulfonyl]azanidyl}pyrimidin‐1‐ium) tetraiodide, 2C10H11N4O2S+·I42−, (IV)], where the [I4]2− ion is located at a crystallographic inversion centre; a tetrafluoroborate monohydrate (2‐{[(4‐azaniumylphenyl)sulfonyl]azanidyl}pyrimidin‐1‐ium tetrafluoroborate monohydrate, C10H11N4O2S+·BF4·H2O, (V)); a nitrate (2‐{[(4‐azaniumylphenyl)sulfonyl]azanidyl}pyrimidin‐1‐ium nitrate, C10H11N4O2S+·NO3, (VI)); an ethanesulfonate {4‐[(pyrimidin‐2‐yl)sulfamoyl]anilinium ethanesulfonate, C10H11N4O2S+·C2H5SO3, (VII)}; and a dihydrate of the 4‐hydroxybenzenesulfonate {4‐[(pyrimidin‐2‐yl)sulfamoyl]anilinium 4‐hydroxybenzenesulfonate dihydrate, C10H11N4O2S+·HOC6H4SO3·2H2O, (VIII)}. All these structures feature alternate layers of cations and of anions where any solvent is associated with the anion layers. The two sulfonate salts are protonated at the aniline N atom and the amide N atom of sulfadiazine, a tautomeric form of the sulfadiazine cation that has not been crystallographically described before. All the other salt forms are instead protonated at the aniline group and on one N atom of the pyrimidine ring. Whilst all eight species are based upon hydrogen‐bonded centrosymetric dimers with graph set R22(8), the two sulfonate structures also differ in that these dimers do not link into one‐dimensional chains of cations through NH3‐to‐SO2 hydrogen‐bonding interactions, whilst the other six species do. The chloride methanol hemisolvate and the tetraiodide are isostructural and a packing analysis of the cation positions shows that the chloride monohydrate structure is also closely related to these.  相似文献   

10.
Afobazole {systematic name: 2‐[2‐(morpholin‐4‐yl)ethylsulfanyl]‐1H‐benzimidazole} is a new anxiolytic drug and Actins, Auzins & Petkune [(2012). Eur. Patent EP10163962] described four polymorphic modifications. In the present study, the crystal structures of two monoclinic polymorphs, 5‐ethoxy‐2‐[2‐(morpholin‐4‐ium‐4‐yl)ethylsulfanyl]‐1H‐benzimidazol‐3‐ium dichloride, C15H23N3O2S2+·2Cl, (II) and (IV), have been established from laboratory powder diffraction data. The crystal packing and conformation of the dications in (II) and (IV) are different. In (II), there are channels in the [001] direction, which offer atmospheric water molecules an easy way of penetrating into the crystal structure, thus explaining the higher hygroscopicity of (II) compared with (IV).  相似文献   

11.
The title complex, [Rh(C10H15)Cl(C14H12N2O4)]Cl·2C4H5NO3, has been synthesized by a substitution reaction of the precursor [bis(2,5‐dioxopyrrolidin‐1‐yl) 2,2′‐bipyridine‐4,4′‐dicarboxylate]chlorido(pentamethylcyclopentadienyl)rhodium(III) chloride with NaOCH3. The RhIII cation is located in an RhC5N2Cl eight‐coordinated environment. In the crystal, 1‐hydroxypyrrolidine‐2,5‐dione (NHS) solvent molecules form strong hydrogen bonds with the Cl counter‐anions in the lattice and weak hydrogen bonds with the pentamethylcyclopentadienyl (Cp*) ligands. Hydrogen bonding between the Cp* ligands, the NHS solvent molecules and the Cl counter‐anions form links in a V‐shaped chain of RhIII complex cations along the c axis. Weak hydrogen bonds between the dimethyl 2,2′‐bipyridine‐4,4′‐dicarboxylate ligands and the Cl counter‐anions connect the components into a supramolecular three‐dimensional network. The synthetic route to the dimethyl 2,2′‐bipyridine‐4,4′‐dicarboxylate‐containing rhodium complex from the [bis(2,5‐dioxopyrrolidin‐1‐yl) 2,2′‐bipyridine‐4,4′‐dicarboxylate]rhodium(III) precursor may be applied to link Rh catalysts to the surface of electrodes.  相似文献   

12.
The crystal structures of three quinuclidine‐based compounds, namely (1‐azabicyclo[2.2.2]octan‐3‐ylidene)hydrazine monohydrate, C7H13N3·H2O ( 1 ), 1,2‐bis(1‐azabicyclo[2.2.2]octan‐3‐ylidene)hydrazine, C14H22N4 ( 2 ), and 1,2‐bis(1‐azoniabicyclo[2.2.2]octan‐3‐ylidene)hydrazine dichloride, C14H24N42+·2Cl? ( 3 ), are reported. In the crystal structure of 1 , the quinuclidine‐substituted hydrazine and water molecules are linked through N—H…O and O—H…N hydrogen bonds, forming a two‐dimensional array. The compound crystallizes in the centrosymmetric space group P21/c. Compound 2 was refined in the space group Pccn and exhibits no hydrogen bonding. However, its hydrochloride form 3 crystallizes in the noncentrosymmetric space group Pc. It shows a three‐dimensional network structure via intermolecular hydrogen bonding (N—H…C and N/C—H…Cl). Compound 3 , with its acentric structure, shows strong second harmonic activity.  相似文献   

13.
The ortho‐metallation product of the reaction of (±)‐amphetamine with gold(III) chloride, [D,L‐2‐(2‐aminopropyl)phenyl‐κ2N,C1]dichloridogold(III), [Au(C9H12N)Cl2], and the two salts resulting from crystallization of (+)‐methamphetamine with gold(III) chloride, D‐methyl(1‐phenylpropan‐2‐yl)azanium tetrachloridoaurate(III), (C10H16N)[AuCl4], and of (±)‐ephedrine with gold(III) chloride, D,L‐(1‐hydroxy‐1‐phenylpropan‐2‐yl)(methyl)azanium tetrachloridoaurate(III), (C10H16NO)[AuCl4], have different structures. The first makes a bidentate complex directly with a dichloridogold(III) group, forming a six‐membered ring structure; the second and third each form a salt with [AuCl4] (each has two formula units in the asymmetric unit). The organic components are all members of the same class of stimulants that are prevalent in illicit drug use. These structures are important contributions to the understanding of the microcrystal tests for these drugs that have been employed for well over 100 years.  相似文献   

14.
The crystal structure of the hydrated proton‐transfer compound of the drug quinacrine [rac‐N′‐(6‐chloro‐2‐methoxyacridin‐9‐yl)‐N,N‐diethylpentane‐1,4‐diamine] with 4,5‐dichlorophthalic acid, C23H32ClN3O2+·2C8H3Cl2O4·4H2O, has been determined at 200 K. The four labile water molecules of solvation in the structure form discrete ...O—H...O—H... hydrogen‐bonded chains parallel to the quinacrine side chain, the two N—H groups of which act as hydrogen‐bond donors for two of the water acceptor molecules. The other water molecules, as well as the acridinium H atom, also form hydrogen bonds with the two anion species and extend the structure into two‐dimensional sheets. Between these sheets there are also weak cation–anion and anion–anion π–π aromatic ring interactions. This structure represents the third example of a simple quinacrine derivative for which structural data are available but differs from the other two in that it is unstable in the X‐ray beam due to efflorescence, probably associated with the destruction of the unusual four‐membered water chain structures.  相似文献   

15.
Carbamazepine (CBZ) is well known as a model active pharmaceutical ingredient used in the study of polymorphism and the generation and comparison of cocrystal forms. The pharmaceutical amide dihydrocarbamazepine (DCBZ) is a less well known material and is largely of interest here as a structural congener of CBZ. Reaction of DCBZ with strong acids results in protonation of the amide functionality at the O atom and gives the salt forms dihydrocarbamazepine hydrochloride {systematic name: [(10,11‐dihydro‐5H‐dibenzo[b,f]azepin‐5‐yl)(hydroxy)methylidene]azanium chloride, C15H15N2O+·Cl}, dihydrocarbamazepine hydrochloride monohydrate {systematic name: [(10,11‐dihydro‐5H‐dibenzo[b,f]azepin‐5‐yl)(hydroxy)methylidene]azanium chloride monohydrate, C15H15N2O+·Cl·H2O} and dihydrocarbamazepine hydrobromide monohydrate {systematic name: [(10,11‐dihydro‐5H‐dibenzo[b,f]azepin‐5‐yl)(hydroxy)methylidene]azanium bromide monohydrate, C15H15N2O+·Br·H2O}. The anhydrous hydrochloride has a structure with two crystallographically independent ion pairs (Z′ = 2), wherein both cations adopt syn conformations, whilst the two hydrated species are mutually isostructural and have cations with anti conformations. Compared to neutral dihydrocarbamazepine structures, protonation of the amide group is shown to cause changes to both the molecular (C=O bond lengthening and C—N bond shortening) and the supramolecular structures. The amide‐to‐amide and dimeric hydrogen‐bonding motifs seen for neutral polymorphs and cocrystalline species are replaced here by one‐dimensional polymeric constructs with no direct amide‐to‐amide bonds. The structures are also compared with, and shown to be closely related to, those of the salt forms of the structurally similar pharmaceutical carbamazepine.  相似文献   

16.
(S)‐1‐(Methylaminocarbonyl)‐3‐phenylpropanaminium chloride (S2·HCl), C10H15N2O+·Cl, crystallizes in the orthorhombic space group P212121 with a single formula unit per asymmetric unit. (5R/S)‐5‐Benzyl‐2,2,3‐trimethyl‐4‐oxoimidazolidin‐1‐ium chloride (R3 and S3), C13H19N2O+·Cl, crystallize in the same space group as S2·HCl but contain three symmetry‐independent formula units. (R/S)‐5‐Benzyl‐2,2,3‐trimethyl‐4‐oxoimidazolidin‐1‐ium chloride monohydrate (R4 and S4), C13H19N2O+·Cl·H2O, crystallize in the space group P21 with a single formula unit per asymmetric unit. Calculations at the B3LYP/6–31G(d,p) and B3LYP/6–311G(d,p) levels of the conformational energies of the cation in R3, S3, R4 and S4 indicate that the ideal gas‐phase global energy minimum conformation is not observed in the solid state. Rather, the effects of hydrogen‐bonding and van der Waals interactions in the crystal structure cause the molecules to adopt higher‐energy conformations, which correspond to local minima in the molecular potential energy surface.  相似文献   

17.
2‐{1‐[(4‐Chloroanilino)methylidene]ethyl}pyridinium chloride methanol solvate, C13H13ClN3+·Cl·CH3OH, (I), crystallizes as discrete cations and anions, with one molecule of methanol as solvent in the asymmetric unit. The N—C—C—N torsion angle in the cation indicates a cis conformation. The cations are located parallel to the (02) plane and are connected through hydrogen bonds by a methanol solvent molecule and a chloride anion, forming zigzag chains in the direction of the b axis. The crystal structure of 2‐{1‐[(4‐fluoroanilino)methylidene]ethyl}pyridinium chloride, C13H13FN3+·Cl, (II), contains just one anion and one cation in the asymmetric unit but no solvent. In contrast with (I), the N—C—C—N torsion angle in the cation corresponds with a trans conformation. The cations are located parallel to the (100) plane and are connected by hydrogen bonds to the chloride anions, forming zigzag chains in the direction of the b axis. In addition, the crystal packing is stabilized by weak π–π interactions between the pyridinium and benzene rings. The crystal of (II) is a nonmerohedral monoclinic twin which emulates an orthorhombic diffraction pattern. Twinning occurs via a twofold rotation about the c axis and the fractional contribution of the minor twin component refined to 0.324 (3). 2‐{1‐[(4‐Fluoroanilino)methylidene]ethyl}pyridinium chloride methanol disolvate, C13H13FN3+·Cl·2CH3OH, (III), is a pseudopolymorph of (II). It crystallizes with two anions, two cations and four molecules of methanol in the asymmetric unit. Two symmetry‐equivalent cations are connected by hydrogen bonds to a chloride anion and a methanol solvent molecule, forming a centrosymmetric dimer. A further methanol molecule is hydrogen bonded to each chloride anion. These aggregates are connected by C—H...O contacts to form infinite chains. It is remarkable that the geometric structures of two compounds having two different formula units in their asymmetric units are essentially the same.  相似文献   

18.
The crystal structure of catena‐poly­[[tri‐n‐butyl­tin]‐μ‐3‐(1‐naph­thyl­amino­carbonyl)­acrylato‐κ2O1:O3], [Sn(C4H9)3(C14H10NO3)]n, is composed of polymeric chains wherein the metal center exhibits a distorted trigonal‐bipyramidal geometry, with three n‐butyl groups defining the trigonal plane [mean Sn—C 2.133 (7) Å] and the axial positions being occupied by the carboxyl­ate O atoms of two different N‐(1‐naphthyl)­maleamate ligands with inequivalent Sn—O distances [2.167 (4) and 2.457 (4) Å]. The N‐(1‐naphthyl)­maleamate fragment forms an essentially planar seven‐membered ring involving an intramolecular N—H?O hydrogen bond.  相似文献   

19.
The crystal structures of four substituted‐ammonium dichloride dodecachlorohexasilanes are presented. Each is crystallized with a different cation and one of the structures contains a benzene solvent molecule: bis(tetraethylammonium) dichloride dodecachlorohexasilane, 2C8H20N+·2Cl·Cl12Si6, (I), tetrabutylammonium tributylmethylammonium dichloride dodecachlorohexasilane, C16H36N+·C13H30N+·2Cl·Cl12Si6, (II), bis(tetrabutylammonium) dichloride dodecachlorohexasilane benzene disolvate, 2C16H36N+·2Cl·Cl12Si6·2C6H6, (III), and bis(benzyltriphenylphosphonium) dichloride dodecachlorohexasilane, 2C25H22P+·2Cl·Cl12Si6, (IV). In all four structures, the dodecachlorohexasilane ring is located on a crystallographic centre of inversion. The geometry of the dichloride dodecachlorohexasilanes in the different structures is almost the same, irrespective of the cocrystallized cation and solvent. However, the crystal structure of the parent dodecachlorohexasilane molecule shows that this molecule adopts a chair conformation. In (IV), the P atom and the benzyl group of the cation are disordered over two sites, with a site‐occupation factor of 0.560 (5) for the major‐occupied site.  相似文献   

20.
The redetermined crystal structures of hexane‐1,6‐diammonium dichloride, C6H18N22+·2Cl, (I), hexane‐1,6‐diammonium dibromide, C6H18N22+·2Br, (II), and hexane‐1,6‐diammonium diiodide, C6H18N22+·2I, (III), are described, focusing on their hydrogen‐bonding motifs. The chloride and bromide salts are isomorphous, with both demonstrating a small deviation from planarity [173.89 (10) and 173.0 (2)°, respectively] in the central C—C—C—C torsion angle of the hydrocarbon backbone. The chloride and bromide salts also show marked similarities in their hydrogen‐bonding interactions, with subtle differences evident in the hydrogen‐bond lengths reported. Bifurcated interactions are exhibited between the N‐donor atoms and the halide acceptors in the chloride and bromide salts. The iodide salt is very different in molecular structure, packing and intermolecular interactions. The hydrocarbon chain of the iodide straddles an inversion centre and the ammonium groups on the diammonium cation of the iodide salt are offset from the planar hydrocarbon backbone by a torsion angle of 69.6 (4)°. All three salts exhibit thermotropic polymorphism, as is evident from differential scanning calorimetry analysis and variable‐temperature powder X‐ray diffraction studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号