首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The crystal structure of the title 2:1 salt of tetrazole and a substituted terephthal­amidine, C16H28N42+·2CHN4?, contains an infinite network of hydrogen bonds, with short N?N distances of 2.820 (2) and 2.8585 (19) Å between the tetrazolate anion and the amidinium cation. Involvement of the lateral N atoms of the tetrazole in the hydrogen bonding appears to be a typical binding pattern for the tetrazolate anion.  相似文献   

2.
The title dicadmium compound, [Cd2(C10H8N2)5(H2O)6](C7H6NO2)2(ClO4)2·2H2O, is located around an inversion centre. Each CdII centre is coordinated by three N atoms from three different 4,4′‐bipyridine ligands and three O atoms from three coordinating water molecules in a distorted octahedral coordination environment. In the dicadmium cation unit, one 4,4′‐bipyridine (4,4′‐bipy) molecule acts as a bidentate bridging ligand between two Cd metal ions, while the other four 4,4′‐bipy molecules act only as monodentate terminal ligands, resulting in a rare `H‐type' [Cd2(C10H8N2)5(H2O)6] host unit. These host units are connected to each other viaπ–π stacking interactions, giving rise to a three‐dimensional supramolecular grid network with large cavities. The 3‐aminobenzoate anions, perchlorate anions and water molecules are encapsulated in the cavities by numerous hydrogen‐bonding interactions. To the best of our knowledge, this is the first example of a coordination compound based on both 4,4′‐bipyridine ligands together with discrete 3‐aminobenzoate anions.  相似文献   

3.
In the crystal structure of the title complex, [Cu2(C10H20N4O2)(C10H8N2)2](ClO4)2, the deprotonated dmaeoxd2− ligand {H2dmaeoxd is N,N′‐bis[2‐(dimethylamino)ethyl]oxamide} occupies an inversion centre at the mid‐point of the central C—C bond and is thus in a trans conformation. The two CuII atoms are located in slightly distorted square‐based pyramidal environments. The binuclear units interact with each other viaπ–π interactions to form a one‐dimensional chain extending in the c direction.  相似文献   

4.
In the title compound, [Sr(C7H5O3)2(C12H8N2)2(H2O)2], the SrII ion is located on a twofold rotation axis and assumes a distorted square‐antiprism SrN4O4 coordination geometry, formed by two phenanthroline (phen) ligands, two 2‐hydroxybenzoate anions and two water molecules. Within the mononuclear complex molecule, intramolecular π–π stacking is observed between nearly parallel coordinated phen ligands, while normal intermolecular π–π stacking occurs between parallel phen ligands of adjacent complex molecules. Classic O—H...O and weak C—H...O hydrogen bonding helps to stabilize the crystal structure.  相似文献   

5.
Silylhydrazines and Dimeric N,N′‐Dilithium‐N,N′‐bis(silyl)hydrazides – Syntheses, Reactions, Isomerisations Di‐tert.‐butylchlorosilane reacts with dilithiated hydrazine in a molar ratio to give the N,N′‐bis(silyl)hydrazine, [(Me3C)2SiHNH]2, ( 5 ). Isomeric tris(silyl)hydrazines, N‐difluorophenylsilyl‐N′,N′‐bis(dimethylphenylsilyl)hydrazine ( 7 ) and N‐difluorophenylsilyl‐N,N′‐bis(dimethylphenylsilyl)hydrazine ( 8 ) are formed in the reaction of N‐lithium‐N′‐N′‐bis(dimethylphenylsilyl)hydrazide and F3SiPh. Isomeric bis(silyl)hydrazines, (Me3C)2SiFNHNHSiMe2Ph ( 9 ) and (Me3C)2‐ SiF(PhMe2Si)N–NH2 ( 10 ) are the result of the reaction of di‐tert.‐butylfluorosilylhydrazine and ClSiMe2Ph in the presence of Et3N. Quantum chemical calculations for model compounds demonstrate the dyotropic course of the rearrangement. The monolithium derivative of 5 forms a N‐lithium‐N′,N′‐bis(silyl)hydrazide ( 11 ). The dilithium salts of 5 ( 13 ) and of the bis(tert.‐butyldiphenylsilyl)hydrazine ( 12 ) crystallize as dimers with formation of a central Li4N4 unit. The formation of 12 from 11 occurs via a N′ → N‐silyl group migration. Results of crystal structure analyses are reported.  相似文献   

6.
In the crystal structure of the title compound, [N,N′‐bis(3‐­amino­propyl)­ethyl­enedi­amine‐κ4N,N′,N′′,N′′′][1,3,5‐triazine‐2,4,6(1H,3H,5H)‐tri­thionato(2−)‐κ2N,S]­zinc(II) ethanol sol­vate, [Zn(C8H22N4)2(C3HN3S3)]·C2H6O, the ZnII atom is octa­hedrally coordinated by four N atoms [Zn—N = 2.104 (2)–2.203 (2) Å] of a tetradentate N‐donor N,N′‐bis(3‐­amino­propyl)­ethyl­enedi­amine (bapen) ligand and by two S and N atoms [Zn—S = 2.5700 (7) Å and Zn—N = 2.313 (2) Å] of a tri­thio­cyanurate(2−) (ttcH2−) dianion bonded as a bidentate ligand in a cis configuration. The crystal structure of the compound is stabilized by a network of hydrogen bonds.  相似文献   

7.
8.
The single‐crystal X‐ray structures of dimethyl 2,2′‐bipyridine‐6,6′‐dicarboxylate, C14H12N2O4, and the copper(I) coordination complex bis(dimethyl 2,2′‐bipyridine‐6,6′‐dicarboxylato‐κ2N,N′)copper(I) tetrafluoroborate, [Cu(C14H12N2O4)2]BF4, are reported. The uncoordinated ligand crystallizes across an inversion centre and adopts the anticipated anti pyridyl arrangement with coplanar pyridyl rings. In contrast, upon coordination of copper(I), the ligand adopts an arrangement of pyridyl donors facilitating chelating metal coordination and an increased inter‐pyridyl twisting within each ligand. The distortion of each ligand contrasts with comparable copper(I) complexes of unfunctionalized 2,2′‐bipyridine.  相似文献   

9.
The reaction between [PtCl(terpy)]·2H2O (terpy is 2,2′:6′,2′′‐terpyridine) and pyrazole in the presence of two equivalents of AgClO4 in nitromethane yields the title compound, [Pt(C3H4N2)(C15H11N3)](ClO4)2·CH3NO2, as a yellow crystalline solid. Single‐crystal X‐ray diffraction shows that the dicationic platinum(II) chelate is square planar with the terpyridine ligand occupying three sites and the pyrazole ligand occupying the fourth. The torsion angle subtended by the pyrazole ring relative to the terpyridine chelate is 62.4 (6)°. Density functional theory calculations at the LANL2DZ/PBE1PBE level of theory show that in vacuo the lowest‐energy conformation has the pyrazole ligand in an orientation perpendicular to the terpyridine ligand (i.e. 90°). Seemingly, the stability gained by the formation of hydrogen bonds between the pyrazole NH group and the perchlorate anion in the solid‐state structure is sufficient for the chelate to adopt a higher‐energy conformation.  相似文献   

10.
In the first title salt, [Cu(C12H8N2)2(C5H10N2Se)](ClO4)2, the CuII centre occupies a distorted trigonal–bipyramidal environment defined by four N donors from two 1,10‐phenanthroline (phen) ligands and by the Se donor of a 1,3‐dimethylimidazolidine‐2‐selone ligand, with the equatorial plane defined by the Se and by two N donors from different phen ligands and the axial sites occupied by the two remaining N donors, one from each phen ligand. The Cu—N distances span the range 1.980 (10)–2.114 (11) Å and the Cu—Se distance is 2.491 (3) Å. Intermolecular π–π contacts between imidazolidine rings and the central rings of phen ligands generate chains of cations. In the second salt, [Cu(C10H8N2)2(C3H6N2S)](ClO4)2, the CuII centre occupies a similar distorted trigonal–bipyramidal environment comprising four N donors from two 2,2′‐bipyridyl (bipy) ligands and an S donor from an imidazolidine‐2‐thione ligand. The equatorial plane is defined by the S donor and two N donors from different bipy ligands. The Cu—N distances span the range 1.984 (6)–2.069 (7) Å and the Cu—S distance is 2.366 (3) Å. Intermolecular π–π contacts between imidazolidine and pyridyl rings form chains of cations. A major difference between the two structures is due to the presence in the second complex of two N—H...O hydrogen bonds linking the imidazolidine N—H hydrogen‐bond donors to perchlorate O‐atom acceptors.  相似文献   

11.
The title dimeric complex, bis{μ‐2,2′‐[hexane‐1,6‐diyl­bis(nitrilo­methyl­idyne)]­diphenolato‐1:2κ4O,N:N′,O′}dicopper(II),[Cu2(C20H22N2O2)2], has been investigated by single‐crystal X‐ray diffraction, by thermogravimetric analysis and differential scanning calorimetry, and also by FT–IR spectroscopy. Different synthetic and crystallization procedures gave crystals which were quite different in appearance, and it was initially thought that these were different polymorphic forms. Subsequent structure determination showed, in fact, serendipitous preparation of crystals in the P41 space group by one method and in space group P43 by the other. In these enantiomorphic structures, the Cu atoms have a distorted flattened tetrahedral coordination, with Cu—N and Cu—O distances in the ranges 1.954 (4)–1.983 (4) and 1.887 (4)–1.903 (4) Å, respectively.  相似文献   

12.
The title compund, [Cu2(OH)2(C22H25N3)2](ClO4)2, is a copper(II) dimer, with two [CuL]2+ units [L is bis(6‐methyl‐2‐pyridylmethyl)(2‐phenylethyl)amine] bridged by hydroxide groups to define the {[CuL](μ‐OH)2[CuL]}2+ cation. Charge balance is provided by perchlorate counter‐anions. The cation has a crystallographic inversion centre halfway between the CuII ions, which are separated by 3.0161 (8) Å. The central core of the cation is an almost regular Cu2O2 parallelogram of sides 1.931 (2) and 1.935 (2) Å, with a Cu—O—Cu angle of 102.55 (11)°. The coordination geometry around each CuII centre can be best described as a square‐based pyramid, with three N atoms from L ligands and two hydroxide O atoms completing the coordination environment. Each cationic unit is hydrogen bonded to two perchlorate anions by means of hydroxide–perchlorate O—H...O interactions.  相似文献   

13.
In the title complex, [Ag2Cd(CN)4(C12H12N2)2]·H2O or cis‐[Cd{Ag(CN)2}2(5,5′‐dmbpy)2]·H2O, where 5,5′‐dmbpy is 5,5′‐dimethyl‐2,2′‐bipyridyl, the asymmetric unit consists of a discrete neutral [Cd{Ag(CN)2}2(5,5′‐dmbpy)2] unit and a solvent water molecule. The CdII cation is coordinated by two bidentate chelate 5,5′‐dmbpy ligands and two monodentate [AgI(CN)2] anions, which are in a cis arrangement around the CdII cation, leading to an octahedral CdN6 geometry. The overall structure is stabilized by a combination of intermolecular hydrogen bonding, and AgI...AgI and π–π interactions, forming a three‐dimensional supramolecular network.  相似文献   

14.
In the crystal structure of the title complex, [Ni2(C10H20N4O2)(C12H12N2)2](ClO4)2 or [Ni(dmaeoxd)Ni(dmbp)2](ClO4)2 {H2dmaeoxd is N,N′‐bis­[2‐(dimethyl­amino)ethyl]oxamide and dmbp is 4,4′‐dimethyl‐2,2′‐bipyridine}, the deprotonated dmaeoxd2− ligand is in a cis conformation and bridges two NiII atoms, one of which is located in a slightly distorted square‐planar environment, while the other is in an irregular octa­hedral environment. The cation is located on a twofold symmetry axis running through both Ni atoms. The dmaeoxd2− ligands inter­act with each other via C—H⋯O hydrogen bonds and π–π inter­actions, which results in an extended chain along the c axis.  相似文献   

15.
The title compound, [Pd2(C4H13N3)2(C14H16N2)](NO3)4, comprises discrete tetracationic dumbbell‐type dinuclear complex molecules and noncoordinating nitrate anions. Two Pd(dien)2+ moieties (dien is diethylenetriamine) are joined by the rigid linear exo‐bidentate bridging 2,2′,6,6′‐tetramethyl‐4,4′‐bipyridine ligand to form the dinuclear complex, which lies across a centre of inversion in the space group P21/n, so that the rings in the 2,2′,6,6′‐tetramethyl‐4,4′‐bipyridine bridging ligand are parallel. In the crystal, the primary and secondary amino groups of the dien ligand act as hydrogen‐bond donors towards the nitrate anions to form a three‐dimensional hydrogen‐bond network.  相似文献   

16.
Reaction of AgNO3 and 2,2′‐bipyridine (bipy) under ultrasonic treatment gave the title compound, [Ag(C10H8N2)(NH3)]NO3. The crystal structure consists of dimers formed by two symmetry‐related AgI–bipy monomers connected through intra‐dimer π–π stacking and ligand‐unsupported Ag...Ag interactions. A crystallographic C2 axis passes through the mid‐point of and is perpendicular to the Ag...Agi(−x + 1, y, −z + ) axis. In addition, each AgI cation is coordinated by one chelating bipy ligand and one ammine ligand, giving a trigonal coordination environment capped by the symmetry‐equivalent Ag atom. Molecules are assembled by Ag...Ag, π–π, hydrogen‐bond (N—H...O and C—H...O) and weak Ag...π interactions into a three‐dimensional framework. Comparing the products synthesized under different mechanical treatments, we found that reaction conditions have a significant influence on the resulting structures. The luminescence properties of the title compound are also discussed.  相似文献   

17.
A new N‐phenylated amide (N‐phenylamide) unit containing aromatic diamine, N,N′‐bis(3‐aminobenzoyl)‐N,N′‐diphenyl‐1,4‐phenylenediamine, was prepared by the condensation of N,N′‐diphenyl‐1,4‐phenylenediamine with 3‐nitrobenzoyl chloride, followed by catalytic reduction. Two series of organosoluble aromatic poly(N‐phenylamide‐imide)s and poly(N‐phenylamide‐amide)s with inherent viscosities of 0.58–0.82 and 0.56–1.21 dL/g were prepared by a conventional two‐stage method and the direct phosphorylation polycondensation, respectively, from the diamine with various aromatic dianhydrides and aromatic dicarboxylic acids. All polyimides and polyamides are amorphous and readily soluble in many organic solvents such as N,N‐dimethylacetamide and N‐methyl‐2‐pyrrolidone. These polymers could be solution cast into transparent, tough, and flexible films with high tensile strengths. These polyimides and polyamides had glass‐transition temperatures in the ranges of 230–258 and 196–229 °C, respectively. Decomposition temperatures of the polyimides for 10% weight loss all occurred above 500 °C in both nitrogen and air atmospheres. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2564–2574, 2002  相似文献   

18.
In the title monomer, [Cu(NO3)2(C18H12N2)], the six‐coordinated CuII atom lies on a twofold axis which bisects one of the ligands (a chelating biquinoline) and duplicates the remaining ligand, a chelating nitrate. The latter binds in a very asymmetric way, consistent with a Jahn–Teller distortion in the coordination polyhedron which, due to the triple chelation, is extremely distorted and difficult to describe in terms of any regular model.  相似文献   

19.
The achiral meso form of the title compound, C18H38N2O42+·2Cl, crystallizes to form undulating layers consisting of chains linked via weak hydroxyalkyl C—H...Cl contacts. The chains are characterized by centrosymmetric hydrogen‐bonded dimers generated via N—H...Cl and hydroxycycloalkyl O—H...Cl interactions. transN‐Alkyl bridges subdivide the chains into hydrophilic segments flanked by hydrophobic cycloalkyl stacks along [001].  相似文献   

20.
The title complex, [CuNi(C13H16N3O3)(C10H8N2)2(H2O)]ClO4, has a cis‐oxamide‐bridged heterobinuclear cation, with a Cu...Ni separation of 5.3297 (6) Å, counterbalanced by a disordered perchlorate anion. The CuII and NiII cations are located in square‐pyramidal and octahedral coordination environments, respectively. The complex molecules are assembled into a three‐dimensional supramolecular structure through hydrogen bonds and π–π stacking interactions. The influence of the two types of metal cation on the supramolecular structure is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号