首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The salts 1‐(diaminomethylene)thiouron‐1‐ium hydrogen difluoride, C2H7N4S+·HF2, (I), and bis[1‐(diaminomethylene)thiouron‐1‐ium] hexafluoridosilicate, 2C2H7N4S+·SiF62−, (II), have both been obtained from the reaction of (1‐diaminomethylene)thiourea (HATU) with hydrofluoric acid. Both compounds contain extensive networks of N—H...F hydrogen bonds. The hydrogen difluoride salt contains four independent asymmetric [HF2] anions. In the hexafluoridosilicate salt, the centrosymmetric [SiF6]2− anion is distorted, although this distortion is not clearly correlated with the N—H...F hydrogen‐bonding network.  相似文献   

2.
Crystals of 1‐(diaminomethylene)thiouron‐1‐ium chloride, C2H7N4S+·Cl, 1‐(diaminomethylene)thiouron‐1‐ium bromide, C2H7N4S+·Br, and 1‐(diaminomethylene)thiouron‐1‐ium iodide, C2H7N4S+·I, are built up from the nonplanar 1‐(diaminomethylene)thiouron‐1‐ium cation and the respective halogenide anion. The conformation of the 1‐(diaminomethylene)thiouron‐1‐ium cation in each case is twisted. Both arms of the cation are planar and rotated in opposite directions around the C—N bonds involving the central N atom. The dihedral angles describing the twisted conformation are 22.9 (1), 15.2 (1) and 4.2 (1)° in the chloride, bromide and iodide salts, respectively. Ionic and extensive hydrogen‐bonding interactions join oppositely charged units into a supramolecular network. The aim of the investigation is to study the influence of the size of the ionic radii of the Cl, Br and I ions on the dimensionality of the hydrogen‐bonding network of the 1‐(diaminomethylene)thiouron‐1‐ium cation. The 1‐(diaminomethylene)thiouron‐1‐ium system should be of use in crystal engineering to form multidimensional networks.  相似文献   

3.
Crystals of the title compounds, namely 1‐(diaminomethylene)thiouron‐1‐ium perchlorate, C2H7N4S+·ClO4, 1‐(diaminomethylene)thiouron‐1‐ium hydrogen sulfate, C2H7N4S+·HSO4, 1‐(diaminomethylene)thiouron‐1‐ium dihydrogen phosphate, C2H7N4S+·H2PO4, and its isomorphic relative 1‐(diaminomethylene)thiouron‐1‐ium dihydrogen arsenate, C2H7N4S+·H2AsO4, are built up from a nonplanar 1‐(diaminomethylene)thiouron‐1‐ium cation and the respective anion linked together via N—H...O hydrogen bonds. Both arms of the cation are planar, but they are twisted with respect to one another around the central N atom. Ionic and extensive hydrogen‐bonding interactions join oppositely charged units into layers in the perchlorate, double layers in the hydrogen sulfate, and a three‐dimensional network in the dihydrogen phosphate and dihydrogen arsenate salts. This work demonstrates the usefulness of 1‐(diaminomethylene)thiourea in crystal engineering for the formation of supramolecular networks with acids.  相似文献   

4.
Two oxidation products of 1‐(diaminomethylene)thiourea (HATU) are reported, obtained from reactions with hydrogen peroxide at two different concentrations; these are 3,5‐diamino‐1,2,4‐thiadiazole, C2H4N4S, (I), related to HATU by intramolecular N—S bond formation, and 1‐(diaminomethylene)uronium hydrogen sulfate, C2H7N4O+·HSO4, (II). In (I), molecular hydrogen‐bonded chains could be distinguished, further organized in a herring‐bone‐like pattern. The structure of (II) is stabilized by an extensive network of N—H...O and O—H...O hydrogen bonds, where hydrogen‐bonded anion chains and characteristic cation–anion motifs are present. The compounds are of importance not only with respect to crystal engineering, but also in the design of new synthetic routes to HATU transition metal complexes.  相似文献   

5.
In 9H‐adenine‐1,7‐diium hemioxalate chloride, C5H7N52+·0.5C2O42−·Cl, (I), adenine is doubly protonated, while in 7H‐adenin‐1‐ium semioxalate hemi(oxalic acid) monohydrate, C5H6N5+·C2HO4·0.5C2H2O4·H2O, (II), adenine and one oxalate anion are both monoprotonated. In (I), the adeninium cation forms R22(8) and R12(5) hydrogen‐bonding motifs with the centrosymmetric oxalate anion, while in (II), the cation forms R21(6) and R12(5) motifs with the centrosymmetric oxalic acid molecule and R12(5)and R22(9) motifs with the monoprotonated oxalate anion. Linear hydrogen‐bonded trimers are observed in (I) and (II). In both structures, the hydrogen bonds lead to the formation of two‐dimensional supramolecular hydrogen‐bonded sheets in the crystal packing. The significance of this study lies in the analysis of the interactions occurring via hydrogen bonds and the diversity seen in the supramolecular hydrogen‐bonded networks as a result of such interactions.  相似文献   

6.
The present paper reports the structures of bis(adeninium) zoledronate tetrahydrate {systematic name: bis(6‐amino‐7H‐purin‐1‐ium) hydrogen [1‐hydroxy‐2‐(1H‐imidazol‐3‐ium‐1‐yl)‐1‐phosphonatoethyl]phosphonate tetrahydrate}, 2C5H6N5+·C5H8N2O7P22−·4H2O, (I), and bis(adeninium) zoledronate hexahydrate {systematic name: a 1:1 cocrystal of bis(6‐amino‐7H‐purin‐1‐ium) hydrogen [1‐hydroxy‐2‐(1H‐imidazol‐3‐ium‐1‐yl)‐1‐phosphonatoethyl]phosphonate hexahydrate and 6‐amino‐7H‐purin‐1‐ium 6‐amino‐7H‐purine dihydrogen [1‐hydroxy‐2‐(1H‐imidazol‐3‐ium‐1‐yl)ethane‐1,1‐diyl]diphosphonate hexahydrate}, 2C5H6N5+·C5H8N2O7P22−·6H2O, (II). One of the adenine molecules and one of the phosphonate groups of the zoledronate anion of (II) are protonated on a 50% basis. The zoledronate group displays its usual zwitterionic character, with a protonated imidazole ring; however, the ionization state of the phosphonate groups of the anion for (I) and (II) are different. In (I), the anion has both singly and doubly deprotonated phosphonate groups, while in (II), it has one singly deprotonated phosphonate group and a partially deprotonated phosphonate group. In (I), the cations form an R22(10) base pair, while in (II), they form R22(8) and R22(10) base pairs. Two water molecules in (I) and five water molecules in (II) are involved in water–water interactions. The presence of an additional two water molecules in the structure of (II) might influence the different ionization state of the anion as well as the different packing mode compared to (I).  相似文献   

7.
In the title compounds, C6H7N2O+·ClO4, (I), and C6H7N2O+·C2HO4, (II), the carboxamide plane is twisted from the plane of the protonated pyridine ring. Lamellar or sheet‐like structural features are observed through N—H⋯O and O—H⋯O hydrogen‐bonded motifs of cations and anions in (I) and (II), respectively. These sheets are aggregated through C(4) and C(5) chain motifs in (I) and (II), respectively. R12(4) ring motifs in (I) and R12(5) motifs in (II) are formed via pyridine–anion bifurcated N—H⋯O inter­actions. In (II), carboxamide groups form N—H⋯O dimers around the inversion centres of the unit cell, with R22(8) ring motifs. A 21 screw‐related helical or ribbon‐like structure along the b axis is formed in (II) through carboxamide and pyridinium N—H⋯O hydrogen bonds with the oxalate anions.  相似文献   

8.
In the title compounds, 4‐carboxyanilinium bromide, C7H8NO2+·Br, (I), and 4‐acetylanilinium bromide, C8H10NO+·Br, (II), each asymmetric unit contains a discrete cation with a protonated amino group and a halide anion. Both crystal structures are characterized by two‐dimensional hydrogen‐bonded networks. The ions in (I) are connected via N—H...Br, N—H...O and O—H...Br hydrogen bonds, with three characteristic graph‐set motifs, viz. C(8), C21(4) and R32(8). The centrosymmetric hydrogen‐bonded R22(8) dimer motif characteristic of carboxylic acids is absent. The ions in (II) are connected via N—H...Br and N—H...O hydrogen bonds, with two characteristic graph‐set motifs, viz. C(8) and R42(8). The significance of this study lies in its illustration of the differences between the supramolecular aggregations in two similar compounds. The presence of the methyl group in (II) at the site corresponding to the hydroxyl group in (I) results in a significantly different hydrogen‐bonding arrangement.  相似文献   

9.
The structures of two 1:1 proton‐transfer red–black dye compounds formed by reaction of aniline yellow [4‐(phenyldiazenyl)aniline] with 5‐sulfosalicylic acid and benzenesulfonic acid, and a 1:2 nontransfer adduct compound with 3,5‐dinitrobenzoic acid have been determined at either 130 or 200 K. The compounds are 2‐(4‐aminophenyl)‐1‐phenylhydrazin‐1‐ium 3‐carboxy‐4‐hydroxybenzenesulfonate methanol solvate, C12H12N3+·C7H5O6S·CH3OH, (I), 2‐(4‐aminophenyl)‐1‐phenylhydrazin‐1‐ium 4‐(phenyldiazenyl)anilinium bis(benzenesulfonate), 2C12H12N3+·2C6H5O3S, (II), and 4‐(phenyldiazenyl)aniline–3,5‐dinitrobenzoic acid (1/2), C12H11N3·2C7H4N2O6, (III). In compound (I), the diazenyl rather than the aniline group of aniline yellow is protonated, and this group subsequently takes part in a primary hydrogen‐bonding interaction with a sulfonate O‐atom acceptor, producing overall a three‐dimensional framework structure. A feature of the hydrogen bonding in (I) is a peripheral edge‐on cation–anion association also involving aromatic C—H...O hydrogen bonds, giving a conjoint R12(6)R12(7)R21(4) motif. In the dichroic crystals of (II), one of the two aniline yellow species in the asymmetric unit is diazenyl‐group protonated, while in the other the aniline group is protonated. Both of these groups form hydrogen bonds with sulfonate O‐atom acceptors and these, together with other associations, give a one‐dimensional chain structure. In compound (III), rather than proton transfer, there is preferential formation of a classic R22(8) cyclic head‐to‐head hydrogen‐bonded carboxylic acid homodimer between the two 3,5‐dinitrobenzoic acid molecules, which, in association with the aniline yellow molecule that is disordered across a crystallographic inversion centre, results in an overall two‐dimensional ribbon structure. This work has shown the correlation between structure and observed colour in crystalline aniline yellow compounds, illustrated graphically in the dichroic benzenesulfonate compound.  相似文献   

10.
The structures of the 1:1 hydrated proton‐transfer compounds of isonipecotamide (piperidine‐4‐carboxamide) with oxalic acid, 4‐carbamoylpiperidinium hydrogen oxalate dihydrate, C6H13N2O+·C2HO4·2H2O, (I), and with adipic acid, bis(4‐carbamoylpiperidinium) adipate dihydrate, 2C6H13N2O+·C6H8O42−·2H2O, (II), are three‐dimensional hydrogen‐bonded constructs involving several different types of enlarged water‐bridged cyclic associations. In the structure of (I), the oxalate monoanions give head‐to‐tail carboxylic acid O—H...Ocarboxyl hydrogen‐bonding interactions, forming C(5) chain substructures which extend along a. The isonipecotamide cations also give parallel chain substructures through amide N—H...O hydrogen bonds, the chains being linked across b and down c by alternating water bridges involving both carboxyl and amide O‐atom acceptors and amide and piperidinium N—H...Ocarboxyl hydrogen bonds, generating cyclic R43(10) and R32(11) motifs. In the structure of (II), the asymmetric unit comprises a piperidinium cation, half an adipate dianion, which lies across a crystallographic inversion centre, and a solvent water molecule. In the crystal structure, the two inversion‐related cations are interlinked through the two water molecules, which act as acceptors in dual amide N—H...Owater hydrogen bonds, to give a cyclic R42(8) association which is conjoined with an R44(12) motif. Further N—H...Owater, water O—H...Oamide and piperidinium N—H...Ocarboxyl hydrogen bonds give the overall three‐dimensional structure. The structures reported here further demonstrate the utility of the isonipecotamide cation as a synthon for the generation of stable hydrogen‐bonded structures. The presence of solvent water molecules in these structures is largely responsible for the non‐occurrence of the common hydrogen‐bonded amide–amide dimer, promoting instead various expanded cyclic hydrogen‐bonding motifs.  相似文献   

11.
In 2,4‐diamino‐6‐methyl‐1,3,5‐triazin‐1‐ium (acetoguanaminium) hydrogen phthalate, C4H8N5+·C8H5O4, (I), acetoguanaminium hydrogen maleate, C4H8N5+·C4H3O4, (II), and acetoguanaminium 3‐hydroxypicolinate monohydrate, C4H8N5+·C6H4NO3·H2O, (III), the acetoguanaminium cations interact with the carboxylate groups of the corresponding anions via a pair of nearly parallel N—H...O hydrogen bonds, forming R22(8) ring motifs. In (II) and (III), N—H...N base‐pairing is observed, while there is none in (I). In (II), a series of fused R32(8), R22(8) and R32(8) hydrogen‐bonded rings plus fused R22(8), R62(12) and R22(8) ring motifs occur alternately, aggregating into a supramolecular ladder‐like arrangement. In (III), R22(8) motifs occur on either side of a further ring formed by pairs of N—H...O hydrogen bonds, forming an array of three fused hydrogen‐bonded rings. In (I) and (II), the anions form a typical intramolecular O—H...O hydrogen bond with graph set S(7), whereas in (III) an intramolecular hydrogen bond with graph set S(6) is formed.  相似文献   

12.
In the crystal structures of 2‐amino‐4,6‐dimethoxypyrimidinium 2,4,6‐trinitrophenolate (picrate), C6H10N3O2+·C6H2N3O7, (I), and 2,4‐diamino‐5‐(4‐chlorophenyl)‐6‐ethylpyrimidin‐1‐ium (pyrimethaminium or PMN) picrate dimethyl sulfoxide solvate, C12H14ClN4+·C6H2N3O7·C2H6OS, (II), the 2‐amino‐4,6‐dimethoxypyrimidine and PMN cations are protonated at one of the pyrimidine N atoms. The picrate anion interacts with the protonated cations through bifurcated N—H...O hydrogen bonds, forming R21(6) and R12(6) ring motifs. In (I), Z′ = 2. In (II), two inversion‐related PMN cations are connected through a pair of N—H...N hydrogen bonds involving the 4‐amino group and the uncharged N atom of the pyrimidine ring, forming a cyclic hydrogen‐bonded R22(8) motif. In addition to the pairing, the O atom of the dimethyl sulfoxide solvent molecule bridges the 2‐amino and 4‐amino groups on both sides of the paired bases, resulting in a self‐complementary …DADA… array of quadruple hydrogen‐bonding patterns.  相似文献   

13.
The title compounds are proton‐transfer compounds of cytosine with nicotinic acid [systematic name: 4‐amino‐2‐oxo‐2,3‐dihydropyrimidin‐1‐ium nicotinate monohydrate (cytosinium nicotinate hydrate), C4H6N3O+·C6H4NO2·H2O, (I)] and isonicotinic acid [systematic name: 4‐amino‐2‐oxo‐2,3‐dihydropyrimidin‐1‐ium isonicotinate–4‐aminopyrimidin‐2(1H)‐one–water (1/1/2) (cytosinium isonicotinate cytosine dihydrate), C4H6N3O+·C6H4NO2·C4H5N3O·2H2O, (II)]. In (I), the cation and anion are interlinked by N—H...O hydrogen bonding to form a one‐dimensional tape. These tapes are linked through water molecules to form discrete double sheets. In (II), the cytosinium–cytosine base pairs are connected by triple hydrogen bonds, leading to one‐dimensional polymeric ribbons. These ribbons are further interconnected via nicotinate–water and water–water hydrogen bonding, resulting in an overall three‐dimensional network.  相似文献   

14.
The X‐ray single‐crystal structure determinations of the chemically related compounds 2‐amino‐1,3,4‐thiadiazolium hydrogen oxalate, C2H4N3S+·C2HO4, (I), 2‐amino‐1,3,4‐thiadiazole–succinic acid (1/2), C2H3N3S·2C4H6O4, (II), 2‐amino‐1,3,4‐thiadiazole–glutaric acid (1/1), C2H3N3S·C5H8O4, (III), and 2‐amino‐1,3,4‐thiadiazole–adipic acid (1/1), C2H3N3S·C6H10O4, (IV), are reported and their hydrogen‐bonding patterns are compared. The hydrogen bonds are of the types N—H...O or O—H...N and are of moderate strength. In some cases, weak C—H...O interactions are also present. Compound (II) differs from the others not only in the molar ratio of base and acid (1:2), but also in its hydrogen‐bonding pattern, which is based on chain motifs. In (I), (III) and (IV), the most prominent feature is the presence of an R22(8) graph‐set motif formed by N—H...O and O—H...N hydrogen bonds, which are present in all structures except for (I), where only a pair of N—H...O hydrogen bonds is present, in agreement with the greater acidity of oxalic acid. There are nonbonding S...O interactions present in all four structures. The difference electron‐density maps show a lack of electron density about the S atom along the S...O vector. In all four structures, the carboxylic acid H atoms are present in a rare configuration with a C—C—O—H torsion angle of ∼0°. In the structures of (II)–(IV), the C—C—O—H torsion angle of the second carboxylic acid group has the more common value of ∼|180|°. The dicarboxylic acid molecules are situated on crystallographic inversion centres in (II). The Raman and IR spectra of the title compounds are presented and analysed.  相似文献   

15.
Two structures presenting an uncomplexed 2,6‐diaminopurine (dap) group are reported, namely 2,6‐diamino‐9H‐purine monohydrate, C5H6N6·H2O, (I), and bis(2,6‐diamino‐9H‐purin‐1‐ium) 2‐(2‐carboxylatophenyl)acetate heptahydrate, 2C5H7N6+·C9H6O42−·7H2O, (II). Both structures are rather featureless from a molecular point of view, but present instead an outstanding hydrogen‐bonding scheme. In compound (I), this is achieved through a rather simple independent unit content (one neutral dap and one water molecule) and takes the form of two‐dimensional layers tightly connected by strong hydrogen bonds, and interlinked by much weaker hydrogen bonds and π–π interactions. In compound (II), the fundamental building blocks are more complex, consisting of two independent 2,6‐diamino‐9H‐purin‐1‐ium (Hdap+) cations, one homophthalate [2‐(2‐carboxylatophenyl)acetate] dianion and seven solvent water molecules. The large number of hydrogen‐bond donors and acceptors produces 26 independent interactions, leading to an extended and complicated network of hydrogen bonds in a packing organization characterized by the stacking of interleaved anionic and cationic planar arrays. These structural characteristics are compared with those of similar compounds in the literature.  相似文献   

16.
The three title compounds were obtained by reactions which mimic, with more extreme conditions, the in vivo metabolism of barbiturates. 1‐(2‐Cyclohex‐2‐enylpropionyl)‐3‐methylurea, C11H18N2O2, (I), and 2‐ethylpentanamide, C8H17NO, (III), both crystallize with two unique molecules in the asymmetric unit; in the case of (III), one unique molecule exhibits whole‐molecule disorder. 2‐Ethyl‐5‐methylhexanamide, C9H19NO, (II), crystallizes as a fully ordered molecule with Z′ = 1. In the crystal structures, three different hydrogen‐bonding motifs are observed: in (I) a combination of R22(4) and R22(8) motifs, and in (II) and (III) a combination of R42(8) and R22(8) motifs. In all three structures, one‐dimensional ribbons are formed by N—H...O hydrogen‐bonding interactions.  相似文献   

17.
Two 1:1 proton‐transfer complexes of sulfobenzoic acids with aromatic amines, namely 4‐[2‐(4‐pyridyl)ethenyl]pyridinium 2‐carboxybenzenesulfonate, C12H11N2+·C7H5O5S, (I), and 1,10‐phenanthrolin‐1‐ium 4‐carboxybenzenesulfonate dihydrate, C12H9N2+·C7H5O5S·2H2O, (II), have very different hydrogen‐bonding patterns compared with reported organic sulfobenzoic acid complexes. In (I), two cations and two anions form a four‐molecule loop, in which π–π interactions occur. In (II), the anions and water molecules form a three‐dimensional hydrogen‐bonding network, while the cations only act as pendant components. The water molecules play a central role in the formation of the abundant hydrogen‐bonding architecture in (II). The relative poorness and richness of hydrogen bonds in (I) and (II), respectively, give rise to novel hydrogen‐bonding patterns.  相似文献   

18.
Molecules of eletriptan hydrobromide monohydrate (systematic name: (1S,2R)‐1‐methyl‐2‐{5‐[2‐(phenylsulfonyl)ethyl]‐1H‐indol‐3‐ylmethyl}pyrrolidinium bromide monohydrate), C22H27N2O2S+·Br·H2O, (I), and naratriptan hydrochloride (systematic name: 1‐methyl‐4‐{5‐[2‐(methylsulfamoyl)ethyl]‐1H‐indol‐3‐yl}piperidinium chloride), C17H26N3O2S+·Cl, (II), adopt conformations similar to other triptans. The C‐2 and C‐5 substituents of the indole ring, both of which are in a region of conformational flexibility, are found to be oriented on either side of the indole ring plane in (I), whilst they are on the same side in (II). The N atom in the C‐2 side chain is protonated in both structures and is involved in the hydrogen‐bonding networks. In (I), the water molecules create helical hydrogen‐bonded chains along the c axis. In (II), the hydrogen bonding of the chloride ions results in macrocyclic R42(20) and R42(24) ring motifs that form sheets in the bc plane. This structural analysis provides an insight into the molecular structure–activity relationships within this class of compound, which is of use for drug development.  相似文献   

19.
The 1:1 proton‐transfer compounds of l ‐tartaric acid with 3‐aminopyridine [3‐aminopyridinium hydrogen (2R,3R)‐tartrate dihydrate, C5H7N2+·C4H5O6·2H2O, (I)], pyridine‐3‐carboxylic acid (nicotinic acid) [anhydrous 3‐carboxypyridinium hydrogen (2R,3R)‐tartrate, C6H6NO2+·C4H5O6, (II)] and pyridine‐2‐carboxylic acid [2‐carboxypyridinium hydrogen (2R,3R)‐tartrate monohydrate, C6H6NO2+·C4H5O6·H2O, (III)] have been determined. In (I) and (II), there is a direct pyridinium–carboxyl N+—H...O hydrogen‐bonding interaction, four‐centred in (II), giving conjoint cyclic R12(5) associations. In contrast, the N—H...O association in (III) is with a water O‐atom acceptor, which provides links to separate tartrate anions through Ohydroxy acceptors. All three compounds have the head‐to‐tail C(7) hydrogen‐bonded chain substructures commonly associated with 1:1 proton‐transfer hydrogen tartrate salts. These chains are extended into two‐dimensional sheets which, in hydrates (I) and (III) additionally involve the solvent water molecules. Three‐dimensional hydrogen‐bonded structures are generated via crosslinking through the associative functional groups of the substituted pyridinium cations. In the sheet struture of (I), both water molecules act as donors and acceptors in interactions with separate carboxyl and hydroxy O‐atom acceptors of the primary tartrate chains, closing conjoint cyclic R44(8), R34(11) and R33(12) associations. Also, in (II) and (III) there are strong cation carboxyl–carboxyl O—H...O hydrogen bonds [O...O = 2.5387 (17) Å in (II) and 2.441 (3) Å in (III)], which in (II) form part of a cyclic R22(6) inter‐sheet association. This series of heteroaromatic Lewis base–hydrogen l ‐tartrate salts provides further examples of molecular assembly facilitated by the presence of the classical two‐dimensional hydrogen‐bonded hydrogen tartrate or hydrogen tartrate–water sheet substructures which are expanded into three‐dimensional frameworks via peripheral cation bifunctional substituent‐group crosslinking interactions.  相似文献   

20.
Two related proton‐transfer compounds, namely piperazine‐1,4‐diium 4‐oxo‐4H‐pyran‐2,6‐dicarboxylate monohydrate, C4H12N22+·C7H2O62−·H2O or (pipzH2)(cdo)·H2O, (I), and piperazine‐1,4‐diium bis(6‐carboxy‐4‐oxo‐4H‐pyran‐2‐carboxylate), C4H12N22+·2C7H3O6 or (pipzH2)(cdoH)2, (II), were obtained by the reaction of 4‐oxo‐4H‐pyran‐2,6‐dicarboxylic acid (chelidonic acid, cdoH2) and piperazine (pipz). In (I), both carboxyl H atoms of chelidonic acid have been transferred to piperazine to form the piperazine‐1,4‐diium ion. The structure is a monohydrate. All potential N—H donors are involved in N—H...O hydrogen bonds. The water molecule spans two anions via the 4‐oxo group of the pyranose ring and a carboxylate O atom. The hydrogen‐bonding motif is essentially two‐dimensional. The structure is a pseudomerohedral twin. In the asymmetric unit of (II), the anion consists of monodeprotonated chelidonic acid, while the piperazine‐1,4‐diium cation is located on an inversion centre. The single carboxyl H atom is disordered in two respects. Firstly, the disordered H atom is shared equally by both carboxylic acid groups. Secondly, the H atom is statistically disordered between two positions on either side of a centre of symmetry and is engaged in a very short hydrogen‐bonding interaction; the relevant O...O distances are 2.4549 (11) and 2.4395 (11) Å, and the O—H...O angles are 177 (6) and 177 (5)°, respectively. Further hydrogen bonding of the type N—H...O places the (pipzH2)2+ cations in pockets formed by the chains of (cdoH) anions. In contrast with (I), the (pipzH2)2+ cations form hydrogen‐bonding arrays that are perpendicular to the anions, yielding a three‐dimensional hydrogen‐bonding motif. The structures of both (I) and (II) also feature π–π stacking interactions between aromatic rings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号