首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The synthesis of 3‐[5‐(4‐chlorophenyl)‐1‐(4‐methoxyphenyl)‐1H‐pyrazol‐3‐yl]propionic acid, C19H17ClN2O3, (I), and its corresponding methyl ester, methyl 3‐[5‐(4‐chlorophenyl)‐1‐(4‐methoxyphenyl)‐1H‐pyrazol‐3‐yl]propionate, C20H19ClN2O3, (II), is regiospecific. However, correct identification of the regioisomer formed by spectroscopic techniques is not trivial and single‐crystal X‐ray analysis provided the only means of unambiguous structure determination. Compound (I) crystallizes with Z′ = 2. The propionic acid groups of the two crystallographically unique molecules form a hydrogen‐bonded dimer, as is typical of carboxylic acid groups in the solid state. Conformational differences between the methoxybenzene and pyrazole rings give rise to two unique molecules. The structure of (II) features just one molecule in the asymmetric unit and the crystal packing makes greater use than (I) of weak C—H...A interactions, despite the lack of any functional groups for classical hydrogen bonding.  相似文献   

2.
The structures of the title compounds, C15H13N3O4, (I), and C16H15N3O5 [IUPAC name: ethyl 6‐amino‐5‐cyano‐2‐methyl‐4‐(3‐nitro­phenyl)‐4H‐pyrano‐3‐carboxyl­ate], (II), are very similar, with the heterocyclic rings adopting boat conformations. The pseudo‐axial m‐nitro­phenyl substituents are rotated by 84.0 (1) and 98.7 (1)° in (I) and (II), respectively, with respect to the four coplanar atoms of the boat. The dihedral angles between the phenyl rings and nitro groups are 12.1 (2) and 8.4 (2)° in (I) and (II), respectively. The two compounds have similar patterns of intermolecular N—H?O and N—H?N hydrogen bonding, which link mol­ecules into infinite tapes along b .  相似文献   

3.
The structures of the title compounds, C28H33N3O, (I), and C26H27NO3, (II), together with their two‐photon absorption properties and fluorescence activities are reported. Molecules of (II) reside on crystallographic mirror planes containing the piperidone C=O group and N‐methyl H atoms. Because of the conjugation between the donor and acceptor parts, the central heterocycle in both (I) and (II) exhibits a flattened boat conformation, with deviations of the N atom and the opposite C atom from the planar fragment. The dihedral angles between the coplanar heterocyclic atoms and terminal C6 rings are less than 20° in both (I) and (II). In (I), the N‐methyl group of the ring occupies an equatorial position, but in (II) it is positioned in an axial site. In the crystal structure of (I), weak intermolecular C—H...π(arene) and C—H...O steric contacts link the molecules along the a axis. In the crystal structure of (II), molecules form stacks along the b axis.  相似文献   

4.
In the molecules of both methyl (1RS,3SR,3aRS,6aSR)‐1‐methyl‐3‐(3‐methyl‐1‐phenyl‐1H‐pyrazol‐4‐yl)‐4,6‐dioxo‐5‐phenyloctahydropyrrolo[3,4‐c]pyrrole‐1‐carboxylate, C25H24N4O4, (I), and methyl (1RS,3SR,3aRS,6aSR)‐5‐(4‐chlorophenyl)‐1‐methyl‐3‐(3‐methyl‐1‐phenyl‐1H‐pyrazol‐4‐yl)‐4,6‐dioxooctahydropyrrolo[3,4‐c]pyrrole‐1‐carboxylate, C25H23ClN4O4, (II), the two rings of the pyrrolopyrrole fragment are both nonplanar, with conformations close to half‐chair forms. The overall conformations of the molecules of (I) and (II) are very similar, apart from the orientation of the ester function. The molecules of (I) are linked into sheets by a combination of an N—H...π(pyrrole) hydrogen bond and three independent C—H...O hydrogen bonds. The molecules of (II) are also linked into sheets, which are generated by a combination of an N—H...N hydrogen bond and two independent C—H...O hydrogen bonds, weakly augmented by a C—H...π(arene) hydrogen bond.  相似文献   

5.
N,N′‐Diethyl‐4‐nitrobenzene‐1,3‐diamine, C10H15N3O2, (I), crystallizes with two independent molecules in the asymmetric unit, both of which are nearly planar. The molecules differ in the conformation of the ethylamine group trans to the nitro group. Both molecules contain intramolecular N—H...O hydrogen bonds between the adjacent amine and nitro groups and are linked into one‐dimensional chains by intermolecular N—H...O hydrogen bonds. The chains are organized in layers parallel to (101) with separations of ca 3.4 Å between adjacent sheets. The packing is quite different from what was observed in isomeric 1,3‐bis(ethylamino)‐2‐nitrobenzene. 2,6‐Bis(ethylamino)‐3‐nitrobenzonitrile, C11H14N4O2, (II), differs from (I) only in the presence of the nitrile functionality between the two ethylamine groups. Compound (II) crystallizes with one unique molecule in the asymmetric unit. In contrast with (I), one of the ethylamine groups, which is disordered over two sites with occupancies of 0.75 and 0.25, is positioned so that the methyl group is directed out of the plane of the ring by approximately 85°. This ethylamine group forms an intramolecular N—H...O hydrogen bond with the adjacent nitro group. The packing in (II) is very different from that in (I). Molecules of (II) are linked by both intermolecular amine–nitro N—H...O and amine–nitrile N—H...N hydrogen bonds into a two‐dimensional network in the (10) plane. Alternating molecules are approximately orthogonal to one another, indicating that π–π interactions are not a significant factor in the packing. Bis(4‐ethylamino‐3‐nitrophenyl) sulfone, C16H18N4O6S, (III), contains the same ortho nitro/ethylamine pairing as in (I), with the position para to the nitro group occupied by the sulfone instead of a second ethylamine group. Each 4‐ethylamino‐3‐nitrobenzene moiety is nearly planar and contains the typical intramolecular N—H...O hydrogen bond. Due to the tetrahedral geometry about the S atom, the molecules of (III) adopt an overall V shape. There are no intermolecular amine–nitro hydrogen bonds. Rather, each amine H atom has a long (H...O ca 2.8 Å) interaction with one of the sulfone O atoms. Molecules of (III) are thus linked by amine–sulfone N—H...O hydrogen bonds into zigzag double chains running along [001]. Taken together, these structures demonstrate that small changes in the functionalization of ethylamine–nitroarenes cause significant differences in the intermolecular interactions and packing.  相似文献   

6.
The X‐ray crystal structure analyses of 3β‐hydroxy‐11‐oxo‐18α‐olean‐12‐en‐28‐oic acid methyl ester ethanol solvate, C31H48O4·C2H6O, (I), and 3,11‐dioxo‐18α‐olean‐12‐en‐28‐oic acid methyl ester, C31H46O4, (II), are described. These two compounds differ only in the structure of ring A. In (I), ring A has a chair conformation, while in (II), it has a twisted boat conformation. In both compounds, ring C has a slightly distorted sofa conformation, rings B, D and E are in chair conformations, and rings D and E are trans‐fused. The asymmetric unit of (I) contains one mol­ecule of ethanol linked by hydrogen bonds with two different mol­ecules of (I).  相似文献   

7.
In methyl 4‐(4‐chloroanilino)‐3‐nitrobenzoate, C14H11ClN2O4, (I), there is an intramolecular N—H...O hydrogen bond and the intramolecular distances provide evidence for electronic polarization of the o‐quinonoid type. The molecules are linked into sheets built from N—H...O, C—H...O and C—H...π(arene) hydrogen bonds, together with an aromatic π–π stacking interaction. The molecules of methyl 1‐benzyl‐2‐(4‐chlorophenyl)‐1H‐benzimidazole‐5‐carboxylate, C22H17ClN2O2, (II), are also linked into sheets, this time by a combination of C—H...π(arene) hydrogen bonds and aromatic π–π stacking interactions.  相似文献   

8.
Four structures of oxoindolyl α‐hydroxy‐β‐amino acid derivatives, namely, methyl 2‐{3‐[(tert‐butoxycarbonyl)amino]‐1‐methyl‐2‐oxoindolin‐3‐yl}‐2‐methoxy‐2‐phenylacetate, C24H28N2O6, (I), methyl 2‐{3‐[(tert‐butoxycarbonyl)amino]‐1‐methyl‐2‐oxoindolin‐3‐yl}‐2‐ethoxy‐2‐phenylacetate, C25H30N2O6, (II), methyl 2‐{3‐[(tert‐butoxycarbonyl)amino]‐1‐methyl‐2‐oxoindolin‐3‐yl}‐2‐[(4‐methoxybenzyl)oxy]‐2‐phenylacetate, C31H34N2O7, (III), and methyl 2‐[(anthracen‐9‐yl)methoxy]‐2‐{3‐[(tert‐butoxycarbonyl)amino]‐1‐methyl‐2‐oxoindolin‐3‐yl}‐2‐phenylacetate, C38H36N2O6, (IV), have been determined. The diastereoselectivity of the chemical reaction involving α‐diazoesters and isatin imines in the presence of benzyl alcohol is confirmed through the relative configuration of the two stereogenic centres. In esters (I) and (III), the amide group adopts an anti conformation, whereas the conformation is syn in esters (II) and (IV). Nevertheless, the amide group forms intramolecular N—H...O hydrogen bonds with the ester and ether O atoms in all four structures. The ether‐linked substituents are in the extended conformation in all four structures. Ester (II) is dominated by intermolecular N—H...O hydrogen‐bond interactions. In contrast, the remaining three structures are sustained by C—H...O hydrogen‐bond interactions.  相似文献   

9.
In the title compounds, 2‐methoxyethyl 6‐amino‐5‐cyano‐2‐methyl‐4‐(1‐naphthyl)‐4H‐pyran‐3‐carboxylate, C21H20N2O4, (II), isopropyl 6‐amino‐5‐cyano‐2‐methyl‐4‐(1‐naphthyl)‐4H‐pyran‐3‐carboxylate, C21H20N2O3, (III), and ethyl 6‐amino‐5‐cyano‐2‐methyl‐4‐(1‐naphthyl)‐4H‐pyran‐3‐carboxylate, C20H18N2O3, (IV), the heterocyclic pyran ring adopts a flattened boat conformation. In (II) and (III), the carbonyl group and a double bond of the heterocyclic ring are mutually anti, but in (IV) they are mutually syn. The ester O atoms in (II) and (III) and the carbonyl O atom in (IV) participate in intramolecular C—H...O contacts to form six‐membered rings. The dihedral angles between the naphthalene substituent and the closest four atoms of the heterocyclic ring are 73.3 (1), 71.0 (1) and 74.3 (1)° for (II)–(IV), respectively. In all three structures, only one H atom of the NH2 group takes part in N—H...O [in (II) and (III)] or N—H...N [in (IV)] intermolecular hydrogen bonds, and chains [in (II) and (III)] or dimers [in (IV)] are formed. In (II), weak intermolecular C—H...O and C—H...N hydrogen bonds, and in (III) intermolecular C—H...O hydrogen bonds link the chains into ladders along the a axis.  相似文献   

10.
The slow evaporation of analytical NMR samples resulted in the formation of crystals of (E)‐2‐({[4‐(dimethylamino)phenyl]imino}methyl)‐4‐nitrophenol, C15H15N3O3, (I), and (E)‐2‐({[4‐(diethylamino)phenyl]imino}methyl)‐4‐nitrophenol, C17H19N3O3, (II). Despite the small structural difference between these two N‐salicylideneaniline derivatives, they show different space groups and diverse molecular packing. The molecules of both compounds are close to being planar due to an intramolecular O—H...N hydrogen bond. The 4‐alkylamino‐substituted benzene ring is inclined at an angle of 13.44 (19)° in (I) and 2.57 (8)° in (II) with respect to the 4‐nitro‐substituted phenol ring. Only very weak intermolecular π–π stacking and C—H...O interactions were found in these structures.  相似文献   

11.
(2S,3S)‐2,6‐Dimethylheptane‐1,3‐diol, C9H20O2, (I), was synthesized from the ketone (R)‐4‐benzyl‐3‐[(2R,3S)‐3‐hydroxy‐2,6‐dimethylheptanoyl]‐1,3‐oxazolidin‐2‐one, C19H27NO4, (II), containing C atoms of known chirality. In both structures, strong hydrogen bonds between the hydroxy groups form tape motifs. The contribution from weaker C—H...O hydrogen bonds is much more evident in the structure of (II), which furthermore contains an example of a direct short Osp3...Csp2 contact that represents a usually unrecognized type of intermolecular interaction.  相似文献   

12.
In the crystal structures of the title compounds, C11H9FN2O, (I), and C13H12FNO4, (II), the molecules are joined pairwise via different hydrogen bonds and the constituent pairs are crosslinked by weak C—H...O hydrogen bonds. The basic structural motif in (I), which is partially disordered, comprises pairs of molecules arranged in an antiparallel fashion which enables C—H...N[triple‐bond]C interactions. The pairs of molecules are crosslinked by two weak C—H...O hydrogen bonds. The constituent pair in (II) is formed by intramolecular bifurcated C—H...O/O′ and combined inter‐ and intramolecular N—H...O hydrogen bonds. In both structures, F atoms form weak C—F...H—C interactions with the H atoms of the two neighbouring methyl groups, the H...F separations being 2.59/2.80 and 2.63/2.71 Å in (I) and (II), respectively. The bond orders in the molecules, estimated using the natural bond orbitals (NBO) formalism, correlate with the changes in bond lengths. Deviations from the ideal molecular geometry are explained by the concept of non‐equivalent hybrid orbitals. The existence of possible conformers of (I) and (II) is analysed by molecular calculations at the B3LYP/6–31+G** level of theory.  相似文献   

13.
Substituted benzoic acid and cinnamic acid esters are of interest as tyrosinase inhibitors and the development of such inhibitors may help in diminishing many dermatological disorders. The tyrosinase enzyme has also been linked to Parkinson's disease. In view of hydroxylated compounds having ester and amide functionalities to potentially inhibit tyrosinase, we herein report the synthesis and crystal structures of two amide‐based derivatives, namely N‐(4‐acetylphenyl)‐2‐chloroacetamide, C10H10ClNO2, (I), and 2‐(4‐acetylanilino)‐2‐oxoethyl cinnamate, C19H17NO4, (II). In compound (I), the acetylphenyl ring and the N—(C=O)—C unit of the acetamide group are almost coplanar, with a dihedral angle of 7.39 (18)°. Instead of esterification, a cheaper and more efficient synthetic method has been developed for the preparation of compound (II). The molecular geometry of compound (II) is a V‐shape. The acetamide and cinnamate groups are almost planar, with mean deviations of 0.088 and 0.046 Å, respectively; the dihedral angle between these groups is 77.39 (7)°. The carbonyl O atoms are positioned syn and anti to the amide carbonyl O atom. In the crystals of (I) and (II), N—H…O, C—H…O and C—H…π interactions link the molecules into a three‐dimensional network.  相似文献   

14.
In the title compounds, C10H8N2O2, (I), and C12H12N2O2, (II), the two carbonyl groups are oriented with torsion angles of −149.3 (3) and −88.55 (15)°, respectively. The single‐bond distances linking the two carbonyl groups are 1.528 (4) and 1.5298 (17) Å, respectively. In (I), the molecules are linked by an elaborate system of N—H...O hydrogen bonds, which form adjacent R22(8) and R42(8) ring motifs to generate a ladder‐like construct. Adjacent ladders are further linked by N—H...O hydrogen bonds to build a three‐dimensional network. The hydrogen bonding in (II) is far simpler, consisting of helical chains of N—H...O‐linked molecules that follow the 21 screw of the b axis. It is the presence of an elaborate hydrogen‐bonding system in the crystal structure of (I) that leads to the different torsion angle for the orientation of the two adjacent carbonyl groups from that in (II).  相似文献   

15.
Two chemical isomers of 3‐nitro­benzotrifluoride, namely 1‐(4‐chloro­phenyl­sulfanyl)‐2‐nitro‐4‐(tri­fluoro­methyl)­benzene, C13H7ClF3NO2S, (I), and 1‐(4‐chloro­phenyl­sulfanyl)‐4‐nitro‐2‐(tri­fluoro­methyl)­benzene, C13H7ClF3NO2S, (II), have been prepared and their crystal structures determined with the specific purpose of forming a cocrystal of the two. The two compounds display a similar conformation, with dihedral angles between the benzene rings of 83.1 (1) and 76.2 (1)°, respectively, but (I) packs in P while (II) packs in P21/c, with C—H⋯O interactions. No cocrystal could be formed, and it is suggested that the C—H⋯O associations in (II) prevent intermolecular mixing and promote phase separation.  相似文献   

16.
The Schiff base enaminones (3Z)‐4‐(5‐ethylsulfonyl‐2‐hydroxyanilino)pent‐3‐en‐2‐one, C13H17NO4S, (I), and (3Z)‐4‐(5‐tert‐butyl‐2‐hydroxyanilino)pent‐3‐en‐2‐one, C15H21NO2, (II), were studied by X‐ray crystallography and density functional theory (DFT). Although the keto tautomer of these compounds is dominant, the O=C—C=C—N bond lengths are consistent with some electron delocalization and partial enol character. Both (I) and (II) are nonplanar, with the amino–phenol group canted relative to the rest of the molecule; the twist about the N(enamine)—C(aryl) bond leads to dihedral angles of 40.5 (2) and −116.7 (1)° for (I) and (II), respectively. Compound (I) has a bifurcated intramolecular hydrogen bond between the N—H group and the flanking carbonyl and hydroxy O atoms, as well as an intermolecular hydrogen bond, leading to an infinite one‐dimensional hydrogen‐bonded chain. Compound (II) has one intramolecular hydrogen bond and one intermolecular C=O...H—O hydrogen bond, and consequently also forms a one‐dimensional hydrogen‐bonded chain. The DFT‐calculated structures [in vacuo, B3LYP/6‐311G(d,p) level] for the keto tautomers compare favourably with the X‐ray crystal structures of (I) and (II), confirming the dominance of the keto tautomer. The simulations indicate that the keto tautomers are 20.55 and 18.86 kJ mol−1 lower in energy than the enol tautomers for (I) and (II), respectively.  相似文献   

17.
Infinite chains connected by N—H...N hydrogen bonding form the primary packing motif in two closely related 4‐nitroimidazole derivatives, viz. 5‐bromo‐2‐methyl‐4‐nitro‐1H‐imidazole, C4H4BrN3O2, (I), and 2‐methyl‐4‐nitro‐1H‐imidazole‐5‐carbonitrile, C5H4N4O2, (II). These chains are almost identical, even though in (II) there are two symmetry‐independent molecules in the asymmetric unit. The differences appear in the interactions between the chains; in (I), there are strong C—Br...O halogen bonds, which connect the chains into a two‐dimensional grid, while in (II), the cyano group does not participate in specific interactions and the chains are only loosely connected into a three‐dimensional structure.  相似文献   

18.
The molecules of 3‐amino‐4‐anilino‐1H‐isochromen‐1‐one, C15H12N2O2, (I), and 3‐amino‐4‐[methyl(phenyl)amino]‐1H‐isochromen‐1‐one, C16H14N2O2, (II), adopt very similar conformations, with the substituted amino group PhNR, where R = H in (I) and R = Me in (II), almost orthogonal to the adjacent heterocyclic ring. The molecules of (I) are linked into cyclic centrosymmetric dimers by pairs of N—H...O hydrogen bonds, while those of (II) are linked into complex sheets by a combination of one three‐centre N—H...(O)2 hydrogen bond, one two‐centre C—H...O hydrogen bond and two C—H...π(arene) hydrogen bonds.  相似文献   

19.
Cyclohexylamine reacts with 5‐chloro‐3‐methyl‐1‐(pyridin‐2‐yl)‐1H‐pyrazole‐4‐carbaldehyde to give 5‐cyclohexylamino‐3‐methyl‐1‐(pyridin‐2‐yl)‐1H‐pyrazole‐4‐carbaldehyde, C16H20N4O, (I), formed by nucleophilic substitution, but with 5‐chloro‐3‐methyl‐1‐phenyl‐1H‐pyrazole‐4‐carbaldehyde the product is (Z)‐4‐[(cyclohexylamino)methylidene]‐3‐methyl‐1‐phenyl‐1H‐pyrazol‐5(4H)‐one, C17H21N3O, (II), formed by condensation followed by hydrolysis. Compound (II) crystallizes with Z′ = 2, and in one of the two independent molecular types the cyclohexylamine unit is disordered over two sets of atomic sites having occupancies of 0.65 (3) and 0.35 (3). The vinylogous amide portion in each compound shows evidence of electronic polarization, such that in each the O atom carries a partial negative charge and the N atom of the cyclohexylamine portion carries a partial positive charge. The molecules of (I) contain an intramolecular N—H...N hydrogen bond, and they are linked by C—H...O hydrogen bonds to form sheets. Each of the two independent molecules of (II) contains an intramolecular N—H...O hydrogen bond and each molecular type forms a centrosymmetric dimer containing one R22(4) ring and two inversion‐related S(6) rings.  相似文献   

20.
1,3‐Bis(ethylamino)‐2‐nitrobenzene, C10H15N3O2, (I), and 1,3‐bis(n‐octylamino)‐2‐nitrobenzene, C22H39N3O2, (II), are the first structurally characterized 1,3‐bis(n‐alkylamino)‐2‐nitrobenzenes. Both molecules are bisected though the nitro N atom and the 2‐C and 5‐C atoms of the ring by twofold rotation axes. Both display intramolecular N—H...O hydrogen bonds between the amine and nitro groups, but no intermolecular hydrogen bonding. The nearly planar molecules pack into flat layers ca 3.4 Å apart that interact by hydrophobic interactions involving the n‐alkyl groups rather than by π–π interactions between the rings. The intra‐ and intermolecular interactions in these molecules are of interest in understanding the physical properties of polymers made from them. Upon heating in the presence of anhydrous potassium carbonate in dimethylacetamide, (I) and (II) cyclize with formal loss of hydrogen peroxide to form substituted benzimidazoles. Thus, 4‐ethylamino‐2‐methyl‐1H‐benzimidazole, C10H13N3, (III), was obtained from (I) under these reaction conditions. Compound (III) contains two independent molecules with no imposed internal symmetry. The molecules are linked into chains via N—H...N hydrogen bonds involving the imidazole rings, while the ethylamino groups do not participate in any hydrogen bonding. This is the first reported structure of a benzimidazole derivative with 4‐amino and 2‐alkyl substituents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号