首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Deformation behavior of a coarse-grained AZ31 magnesium alloy was investigated at elevated temperatures using commercial rolled sheet. The as-received material had equiaxed grains with an average grain size of 130 μm. The tensile tests revealed that the material exhibited high ductility of 196% at 648 K and 3×10−5 s−1. Stress exponent, grain size exponent and activation energy were characterized to clarify the deformation mechanism. It was suggested from the data analysis that the high ductility was attributed to the deformation mechanism of glide-controlled dislocation creep. In addition, constitutive equation was developed for the present alloy.  相似文献   

2.
High-speed experiments were conducted to characterize the deformation and failure of Styrene Butadiene Rubber at impact rates. Dynamic tensile stress–strain curves of uniaxial strip specimens and force–extension curves of thin sheets were obtained from a Charpy tensile impact apparatus. Results from the uniaxial tension tests indicated that although the rubber became stiffer with increasing strain rates, the stress–strain curves remained virtually the same above 280 s−1. Above this critical strain rate, strength, fracture strain and toughness decreased with increasing strain rates. When strain rates were below 180 s−1, the initial modulus, tensile strength and breaking extension increased as the strain rate increased. Between strain rates of 180 and 280 s−1, the initial modulus and tensile strength increased with increasing strain rates but the extension at break decreased with increasing strain rates. A hyper-viscoelastic constitutive relation of integral form was used to describe the rate-dependent material behavior of the rubber. Two characteristic relaxation times, 5 ms and 0.25 ms, were needed to fit the proposed constitutive equation to the data. The proposed constitutive equation was implemented in ABAQUS Explicit via a user-defined subroutine and used to predict the dynamic response of the rubber sheets in the experiments. Numerical predictions for the transient deformation and failure of the rubber sheet were within 10% of experimental results.  相似文献   

3.
A combined experimental and analytical investigation has been performed to understand the mechanical behavior of two amorphous polymers—polycarbonate and poly(methyl methacrylate)—at strain rates ranging from 10−4 to 104 s−1. This range in strain rates was achieved in uniaxial tension and compression tests using a dynamic mechanical analyzer (DMA), a servo-hydraulic testing machine, and an aluminum split-Hopkinson pressure bar. DMA tension tests were used to characterize the viscoelastic behavior of these materials, with focus on the rate-dependent shift of material transition temperatures. Uniaxial compression tests on the servo-hydraulic machine (10−4 to 1 s−1) and the split-Hopkinson pressure bar (103 to 104 s−1) were used to characterize the rate-dependent yield and post-yield behavior. Both materials were observed to exhibit increased rate sensitivity of yield under the same strain rate/temperature conditions as the β-transition of the viscoelastic behavior. A physically based constitutive model for large strain deformation of thermoplastics was then extended to encompass high-rate conditions. The model accounts for the contributions of different molecular motions which become operational and important in different frequency regimes. The new features enable the model to not only capture the transition in the yield behavior, but also accurately predict the post-yield, large strain behavior over a wide range of temperatures and strain rates.  相似文献   

4.
Uniaxial compression stress–strain tests were carried out on three commercial amorphous polymers: polycarbonate (PC), polymethylmethacrylate (PMMA), and polyamideimide (PAI). The experiments were conducted under a wide range of temperatures (−40 °C to 180 °C) and strain rates (0.0001 s−1 up to 5000 s−1). A modified split-Hopkinson pressure bar was used for high strain rate tests. Temperature and strain rate greatly influence the mechanical response of the three polymers. In particular, the yield stress is found to increase with decreasing temperature and with increasing strain rate. The experimental data for the compressive yield stress were modeled for a wide range of strain rates and temperatures according to a new formulation of the cooperative model based on a strain rate/temperature superposition principle. The modeling results of the cooperative model provide evidence on the secondary transition by linking the yield behavior to the energy associated to the β mechanical loss peak. The effect of hydrostatic pressure is also addressed from a modeling perspective.  相似文献   

5.
Finite element modeling (FEM) of nonisothermal sheet tensile tests has been performed. The effect of deformation-induced heating was incorporated into an isothermal FEM program in two ways: (1) an experimentally measured temperature distribution was used to modify the plastic response of each element and (2) adiabatic heating was enforced by setting net heat production in each element equal to the work of deformation. For a specimen with a 1% taper, these models predict up to a 7% reduction in ultimate elongation for adiabatic tests relative to isothermal ones. These heat transfer conditions were approached at strain rates greater than 10−2/s and less than 10−4/s respectively. Comparison of these models with experiment suggests that the two extreme approximations can be used, except for a relatively narrow range of rates, to provide good first-order estimates of the heating effect on ductility without the need for cumbersome self-consistent heat transfer calculations. For mild steel sheet specimens tested in still air, the critical strain rate range is near the typical testing rate, making interpretation of standard tests difficult.  相似文献   

6.
Mechanistic explanations for the plastic behavior of a wrought magnesium alloy are developed using a combination of experimental and simulation techniques. Parameters affecting the practical sheet formability, such as strain hardening rate, strain rate sensitivity, the degree of anisotropy, and the stresses and strains at fracture, are examined systematically by conducting tensile tests of variously oriented samples at a range of temperatures (room temperature to 250 °C) and strain rates (10−5–0.1 s−1). Polycrystal plasticity simulations are used to model the observed anisotropy and texture evolution. Strong in-plane anisotropy observed at low temperatures is attributed to the initial texture and the greater than anticipated non-basal cross-slip of dislocations with 〈a〉 type Burgers vectors. The agreement between the measured and simulated anisotropy and texture is further validated by direct observations of the dislocation microstructures using transmission electron microscopy. The increase in the ductility with temperature is accompanied by a decrease in the flow stress, an increase in the strain rate sensitivity, and a decrease in the normal anisotropy. Polycrystal simulations indicate that an increased activity of non-basal, 〈c + a〉, dislocations provides a self-consistent explanation for the observed changes in the anisotropy with increasing temperature.  相似文献   

7.
Gamma titanium aluminides have received considerable attention over the last decade. These alloys are known to have low density, good high temperature strength retention and good oxidation and corrosion resistance. However, poor ductility and low fracture toughness have been the key limiting factors in the full utilization of these alloys. More recently, a new generation of gamma titanium aluminide alloys, commonly referred to as Gamma-Met PX, has been developed by GKSS, Germany. These alloys have been observed to have superior strength and better oxidation resistance at elevated temperatures when compared with conventional gamma titanium aluminides.The present paper discusses results of a study to understand the uniaxial mechanical behavior in both compression and tension of Gamma-Met PX at elevated temperatures and high strain rates. The compression and tensile tests are conducted using a modified Split-Hopkinson Bar apparatus at test temperatures ranging from room temperature to 900 °C and strain rates of up to 3500 s−1. Under uniaxial compression, in the temperature range from room to 600 °C, the flow stress is observed to be nearly independent of test temperature. However, at temperatures higher than 600 °C thermal softening is observed at all strain rates with the rate of thermal softening increasing dramatically between 800 and 900 °C. The room temperature tensile tests show negligible strain-rate dependence on both yield stress and flow stress. With an increase in test temperature from room to 900 °C, the material shows a drop in both yield and flow stress at all levels of plastic strain. However, the measured flow stress is still higher when compared to nickel based super-alloys and other gamma titanium aluminides under similar test conditions. Also, no anomaly in yield stress is observed up to 900 °C.  相似文献   

8.
利用爆炸膨胀环实验技术,对玻璃纤维增强复合材料(GFRC)进行了高应变率(104s-1)下力学性能研究。实验中使用铜丝汽化引爆装药的方法对驱动环进行能量加载,并采用激光速度干涉仪(VISAR)测量试样环自由膨胀的质点速度,实现了玻璃纤维增强复合材料在104应变率下的一维拉伸破坏,并获取了该材料的速度时间曲线。经过计算得到了材料的应力应变关系,最后与该材料在准静态下、中高应变率下实验得到的数据进行了比较。  相似文献   

9.
Mechanical properties of most metallic materials can be improved by reducing their grain size. One of the methods used to reduce the grain size even to the nanometer level is the severe plastic deformation processing. Equal Channel Angular Pressing (ECAP) is one of the most promising severe plastic deformation processes for the nanocrystallization of ductile metals. Nanocrystalline and ultrafine grained metals usually have significantly higher strength properties but lower tensile ductility compared to the coarse grained metals. In this work, the torsion properties of ECAP processed ultrafine grained pure 1070 aluminum were studied in a wide range of strain rates using both servohydraulic materials testing machines and Hopkinson Split Bar techniques. The material exhibits extremely high ductility in torsion and the specimens did not fail even after 300% of strain. Pronounced yield point behavior was observed at strain rates 500 s−1 and higher, whereas at lower strain rates the yielding was continuous. The material showed slight strain softening at the strain rate of 10−4 s−1, almost ideally plastic behavior at strain rates between 10−3 s−1 and 500 s−1, and slight but increasing strain hardening at strain rates higher than that. The tests were monitored using digital cameras, and the strain distributions on the surface of the specimens were calculated using digital image correlation. The strain in the specimen localized very rapidly after yielding at all strain rates, and the localization lead to the development of a shear band. At high strain rates the shear band developed faster than at low strain rates.  相似文献   

10.
Engineering nanostructures in metallic materials such as nanograins and nanotwins can promote plastic performance significantly. Nano/ultrafine-grained metals embedded in coarse grains called bimodal metals and nanotwinned polycrystalline metals have been proved to possess extensively improved yield strength whilst keeping good ductility. This paper will present an experimental study on nanostructured stainless steel prepared by surface mechanical attrition treatment (SMAT) with surface impacts of lower strain rate (10 s?1–103 s?1) and higher strain rate (104 s?1–105 s?1). Microstructure transition has been observed from the original γ-austenite coarse grains to α′-martensite nanograins with bimodal grain size distribution for lower strain rates to nanotwins in the ultrafine/coarse grained austenite phase for higher strain rates. Meanwhile, we will further address the mechanism-based plastic models to describe the yield strength, strain hardening and ductility in nanostructured metals with bimodal grain size distribution and nanotwinned polycrystalline metals. The proposed theoretical models can comprehensively describe the plastic deformation in these two kinds of nanostructured metals and excellent agreement is achieved between the numerical and experimental results. These models can be utilized to optimize the strength and ductility in nanostructured metals by controlling the size and distribution of nanostructures.  相似文献   

11.
Previous investigations on the effects of strain-rate and temperature histories on the mechanical behavior of steel are briefly reviewed. A study is presented on the influence of strain rate and strain-rate history on the shear behavior of a mild steel, over a wide range of temperature Experiments were performed on thin-walled tubular specimens of short gage length, using a torsional split-Hopkinson-bar apparatus adapted to permit quasi-static as well as dynamic straining at different temperatures. The constant-rate behavior was first measured at nominal strain rates of 10?3 and 103 s?1 for ?150, ?100, ?50, 20, 200 and 400°C. Tests were then carried out, at the same temperatures, in which the strain rate was suddenly increased during deformation from the lower to the higher rate at various large values of plastic strain. The increase in rate occurred in a time of the order of 20 μs so that relatively little change of strain took place during the jump. The low strain-rate results show a well-defined elastic limit but no yield drop, a small yield plateau is found at room temperature. The subsequent strain hardening shows a maximum at 200°C, when serrated flow occurs and the ductility is reduced. The high strain-rate results show a considerable drop of stress at yield. The post-yield flow stress decreases steadily with increasing temperature, throughout the temperature range investigated. At room temperature and below, the strain-hardening rate becomes negative at large strains. The adiabatic temperature rise in the dynamic tests was computed on the assumption that the plastic work is entirely converted to heat. This enabled the isothermal dynamic stress-strain curves to be calculated, and showed that considerable thermal softening took place. The initial response to a strain-rate jump is approximately elastic, and has a magnitude which increases with decrease of testing temperature; it is little affected by the amount of prestrain. At 200 and 400° C, a yield drop occurs after the initial stress increment. The post-jump flow stress is always greater than that for the same strain in a constant-rate dynamic test, the strain-hardening rate becoming negative at large strains or low testing temperature. This observed effect of strain-rate history cannot be explained by the thermal softening accompanying dynamic deformation. These and other results concerning total ductility under various strain-rate and temperature conditions show that strain-rate history strongly affects the mechanical behavior of the mild steel tested and, hence, should be taken into account in the formulation of constitutive equations for that material.  相似文献   

12.
A comprehensive study of the thermo-mechanical response of a thermoplastic polymer, nylon 101 is presented. Quasi-static and dynamic compression uniaxial and multi-axial experiments (stress states) were performed at a wide range of strain rates (10−5 to 5000 s−1) and temperatures (−60 to 177 °C or −76 to 350 °F). The material is found to be non-linearly dependent on strain rate and temperature. The change in volume after plastic deformation is investigated and is found to be negligibly small. The relaxation and creep responses at room temperature are found to be dependent on strain rate and the stress–strain level at which these phenomena are initiated. Total deformation is decomposed into visco-elastic and visco-plastic components; these components have been determined at different levels of deformation. Results from non-proportional uniaxial to biaxial compression, and torsion experiments, are also reported for three different strain rates at room temperature. It is shown that nylon 101 has a response dependent on the hydrostatic pressure.  相似文献   

13.
This article examines the time to activate Frank–Read sources in response to macroscopic strain rates ranging from 101 s−1 to 1010 s−1 in aluminium under athermal conditions. We develop analytical models of the bowing of a pinned dislocation segment as well as numerical simulations of three dimensional dislocation dynamics. We find that the strain rate has a direct influence on both the activation time and the source strength of Frank–Read sources at strain rates up to 106 s−1, and the source strength increases in almost direct proportion to the strain rate. This contributes to the increase in the yield stress of materials at these strain rates. Above 106 s−1, the speed of the bowing segments reaches values that exceed the domain of validity of the linear viscous drag law, and the drag law is modified to account for inertial effects on the motion of the dislocation. As a result the activation times of Frank–Read sources reach a finite limit at strain rates greater than 108 s−1, suggesting that Frank–Read sources are unable to operate before homogeneous nucleation relaxes elastic stresses at the higher strain rates of shock loading. Elastodynamic calculations are carried out to compare the contributions of Frank–Read sources and homogeneous nucleation of dislocations to plastic relaxation. We find that at strain rates of 5×107 s−1 homogeneous nucleation becomes the dominant generation mechanism.  相似文献   

14.
The mechanical and stress-optical behavior of Bisphenol-A polycarbonate was investigated in the glass-transition region. For this purpose, optical creep experiments were carried out in shear and elongation on a tensile tester specially designed for use on a microscope state. A Kohlrausch Williams Watts equation (KWW) with a temperature-independent parameter could successfully be applied to the curves describing the time-dependent values of the stress-optical coefficient for several temperatures. The temperature dependence of the corresponding retardation time could be established and described by the WLF equation. For variable stresses the time-dependent birefringence is obtained from a generalized linear stress-optical rule as modeled according to linear superposition. The time-temperature superposition principle was applied to all measurements. With the dynamic moduli some deviations were observed at the transition from the rubbery plateau to the relaxation. The strain-optical coefficient was found to decrease with increasing time and strain. The strain dependence was found to be independent of temperature at constant stress.  相似文献   

15.
Nonlinear viscoelasticity of PP/PS/SEBS blends   总被引:1,自引:0,他引:1  
The nonlinear viscoelastic behavior of polypropylene/polystyrene (PP/PS) blends compatibilized or not with the linear triblock copolymer (styrene-ethylene-/butylene-styrene, SEBS) was investigated. Start-up of steady-shear at rates from 0.1 to 10 s–1 was carried out using a controlled strain rotational rheometer and a sliding plate rheometer for strain histories involving one or several shear rates. The shear stress and first normal shear stress difference were measured as functions of time, and the morphologies of the samples before and after shearing were determined. For each strain history except that involving a single shear rate of 0.1 s–1 the blends showed typical non-linear viscoelastic behavior: a shear stress overshoot/undershoot, depending on the history, followed by a steady state for each step. The first normal stress difference increased monotonically to a steady-state value. The values of the stresses increased with the addition of SEBS. The shear stress overshoot and undershoot and the times at which they occurred depended strongly on the strain history, decreasing for a subsequent shear rate step performed in the same direction as the former, and the time at which stress undershoot occurred increased for a subsequent shear rate step performed in the opposite direction, irrespective of the magnitude of the shear rate. This behavior was observed for all the blends studied. The time of overshoot in a single-step shear rate experiment is inversely proportional to the shear rate, and the steady-state value of N1 scaled linearly with shear rate, whereas the steady-state shear stress did not. The average diameter of the dispersed phase decreased for all strain histories when the blend was not compatibilized. When the blend was compatibilized, the average diameter of the dispersed phase changed only during the stronger flows. Experimental data were compared with the predictions of a model formulated using ideas of Doi and Ohta (1991), Lacroix et al. (1998) and Bousmina et al. (2001). The model correctly predicted the behavior of the uncompatibilized blends for single-step shear rates but not that of the compatibilized blends, nor did it predict morphologies after shearing.  相似文献   

16.
The tensile response, the low cycle fatigue(LCF) resistance, and the creep behavior of an aluminum(Al) cast alloy are studied at ambient and elevated temperatures.A non-contact real-time optical extensometer based on the digital image correlation(DIC)is developed to achieve strain measurements without damage to the specimen. The optical extensometer is validated and used to monitor dynamic strains during the mechanical experiments. Results show that Young's modulus of the cast alloy decreases with the increasing temperature, and the percentage elongation to fracture at 100℃ is the lowest over the temperature range evaluated from 25℃ to 300℃. In the LCF test, the fatigue strength coefficient decreases, whereas the fatigue strength exponent increases with the rising temperature. The fatigue ductility coefficient and exponent reach maximum values at 100℃. As expected, the resistance to creep decreases with the increasing temperature and changes from 200℃ to 300℃.  相似文献   

17.
目前,分离式Hopkinson杆实验技术已经被广泛用于测试材料在10~2~10~4s~(-1)应变率范围内的动态力学特性。为了抑制入射波的高频振荡,实现恒定应变率加载,本文利用分离式Hopkinson拉杆(SHTB)实验装置,研究了加载金属短杆(2A12T4铝合金)及整形垫片(纸板、PVC软塑料及带磁性胶皮)对入射波波形的影响。实验结果表明,整形垫片降低了入射应力脉冲的高频振荡,获得了比较平滑的入射应力脉冲,延长了上升时间。同时,利用所得的波形整形结果,对2A12T4铝合金进行了拉伸应力波脉冲加载的拉伸和断裂实验测试。  相似文献   

18.
Combination of physically based constitutive models for body centered cubic (bcc) and face centered cubic (fcc) metals developed recently by the authors [Voyiadjis, G.Z., Abed, F.H., 2005. Microstructural based models for bcc and fcc metals with temperature and strain rate dependency. Mech. Mater. 37, 355–378] are used in modeling the plastic deformation of AL-6XN stainless steel over a wide range of strain rates between 0.001 and 8300 s−1 at temperatures from 77 to 1000 K. The concept of thermal activation analysis as well as the dislocation interaction mechanism is used in developing the plastic flow model for both the isothermal and adiabatic plastic deformation. In addition, the experimental observations of AL-6XN conducted by Nemat-Nasser et al. [Nemat-Nasser, S., Guo, W., Kihl, D., 2001. Thermomechanical response of AL-6XN stainless steel over a wide range of strain rates and temperatures, J. Mech. Phys. Solids 49, 1823–1846] are utilized in understanding the underlying deformation mechanisms. The plastic flow is considered in the range of temperatures and strain rates where diffusion and creep are not dominant, i.e., the plastic deformation is attributed to the motion of dislocations only. The modeling of the true stress–true strain curves for AL-6XN stainless steel is achieved using the classical secant modulus for the case of unidirectional deformation. The model parameters are obtained using the experimental results of three strain rates (0.001, 0.1, and 3500 s−1). Good agreement is obtained between the experimental results and the model predictions. Moreover, the independency of the present model to the experiments used in the modeling is verified by comparing the theoretical results to an independent set of experimental data at the strain rate of 8300 s−1 and various initial temperatures. Good correlation is observed between the model predictions and the experimental observations.  相似文献   

19.
Dynamic response of a cellular sandwich core material, balsa wood, is investigated over its entire density spectrum ranging from 55 to 380 kg/m3. Specimens were compression loaded along the grain direction at a nominal strain rate of 3 × 103 s−1 using a modified Kolsky (split Hopkinson) bar. The dynamic data are discussed and compared to those of quasi-static experiments reported in a previous study (Mech. Mater. 35 (2003) 523). Results show that while the initial failure stress is very sensitive to the rate of loading, plateau (crushing) stress remains unaffected by the strain rate. As in quasi-static loading, buckling and kink band formation were identified to be two major failure modes in dynamic loading as well. However, the degree of dynamic strength enhancement was observed to be different for these two distinct modes. Kinematics of deformation of the observed failure modes and associated micro-inertial effects are modeled to explain this different behavior. Specific energy dissipation capacity of balsa wood was computed and is found to be comparable with those of fiber-reinforced polymer composites.  相似文献   

20.
A series of tensile tests of Sn–3Ag–0.5Cu and Sn–0.7Cu lead-free solders were investigated at various strain rates from 1 × 10−4 s−1 to 1 × 10−2 s−1 and over a wide temperature range from 25 oC to 150 oC. Two-step strain rate jump tests, three-step short term creep tests with stress jump, and uniaxial ratcheting tests were also conducted. Based on the test data, a new constitutive model was proposed with a simple formulation and only eight material constants which can be easily obtained. The model employs two carefully defined back stress components to simulate the loading/unloading asymmetry phenomenon in uniaxial ratcheting tests. Different evolution rules of short-range back stress were given for loading and unloading stage, which provides the model ability to simulate the asymmetry in hysteresis loops. The proposed model presents good simulation of uniaxial tensile tests, strain rate jump tests, short term creep tests with stress jump, and uniaxial ratcheting tests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号