首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nandrolone (19‐nortestosterone) is an androgenic anabolic steroid illegally used as a growth‐promoting agent in animal breeding and as a performance enhancer in athletics. Therefore, its use was officially banned in 1974 by the Medical Commission of the International Olympic Committee (IOC). Following nandrolone administration, the main metabolites in humans are 19‐norandrosterone, 19‐norethiocolanolone and 19‐norepiandrosterone, and their presence in urine is the basis of detecting its abuse. The present work was undertaken to determine, in human urine, nandrolone metabolites (phase I and phase II) by developing and comparing multiresidue liquid chromatography/tandem mass spectrometry (LC/MS/MS) and gas chromatography/mass spectrometry (GC/MS) methods. A double extraction by solid‐phase extraction (SPE) was necessary for the complete elimination of the interfering compounds. The proposed methods were also tested on a real positive sample, and they allow us to determine the conjugated/free fractions ratio reducing the risk of false positive or misleading results and they should allow laboratories involved in doping control analysis to monitor the illegal use of steroids. The advantages of LC/MS/MS over GC/MS (which is the technique mainly used) include the elimination of the hydrolysis and derivatization steps: it is known that during enzymatic hydrolysis several steroids can be converted into related compounds and deconjugation is not always 100% effective. The validation parameters for the two methods were similar (limit of quantification (LOQ) <1 ng/mL and percentage coefficient of variance (CV%) <16.4), and both were able to confirm unambiguously all the analytes, thus confirming the validity of both techniques. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
Benzophenone (BP) is one of the many contaminants reported as present in foodstuffs due to its migration from food packaging materials. Liquid chromatography/tandem mass spectrometry (LC/MS/MS) is acknowledged in the literature as the method of choice for this analysis. However, cases have been reported where the use of this methodology was insufficient to unambiguously confirm the presence of a contaminant. In previous work performed by the authors, the unequivocal identification of BP in packaged foods was not possible even when monitoring two m/z transitions (precursor ion – product ion), since ion ratio errors higher than 20% were obtained. In order to overcome this analytical problem a fast, sensitive and selective liquid chromatography/high‐resolution mass spectrometry (LC/HRMS) methodology has been developed and applied to the analysis of BP in packaged foods. A direct comparison between LC/HRMS and LC/MS/MS data indicated better selectivity when working with LC/HRMS at a resolving power of 50 000 FWHM (full width at half maximum) than when monitoring two m/z transitions by LC/MS/MS. The resolving power used enabled the detection and identification of Harman as the compound impeding the confirmation of BP by LC‐MS/MS. Similar quantitative results were obtained by an Orbitrap mass analyser (Exactive?) and a triple quadrupole mass analyser (TSQ Quantum Ultra AM?). Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
Gas chromatography/mass spectrometry (GC/MS) is applied to the analysis of volatile and thermally stable compounds, while liquid chromatography/atmospheric pressure chemical ionization mass spectrometry (LC/APCI‐MS) and liquid chromatography/electrospray ionization mass spectrometry (LC/ESI‐MS) are preferred for the analysis of compounds with solution acid‐base chemistry. Because organic explosives are compounds with low polarity and some of them are thermally labile, they have not been very well analyzed by GC/MS, LC/APCI‐MS and LC/ESI‐MS. Herein, we demonstrate liquid chromatography/negative ion atmospheric pressure photoionization mass spectrometry (LC/NI‐APPI‐MS) as a novel and highly sensitive method for their analysis. Using LC/NI‐APPI‐MS, limits of quantification (LOQs) of nitroaromatics and nitramines down to the middle pg range have been achieved in full MS scan mode, which are approximately one order to two orders magnitude lower than those previously reported using GC/MS or LC/APCI‐MS. The calibration dynamic ranges achieved by LC/NI‐APPI‐MS are also wider than those using GC/MS and LC/APCI‐MS. The reproducibility of LC/NI‐APPI‐MS is also very reliable, with the intraday and interday variabilities by coefficient of variation (CV) of 0.2–3.4% and 0.6–1.9% for 2,4,6‐trinitrotoluene (2,4,6‐TNT). Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

4.
The potential of gas chromatography coupled to tandem mass spectrometry (GC/MS/MS) with a triple quadrupole analyzer (QqQ) has been investigated for the quantification and reliable identification of sixteen polycyclic aromatic hydrocarbons (PAHs) from the EPA priority list in animal and vegetable samples from aquaculture activities, whose fat content ranged from 5 to 100%. Matrices analyzed included fish fillet, fish feed, fish oil and linseed oil. Combining optimized saponification and solid‐phase extraction led to high efficiency in the elimination of interfering compounds, mainly fat, from the extracts. The developed procedure minimized the presence of these interfering compounds in the extracts and provided satisfactory recoveries of PAHs. The excellent sensitivity and selectivity of GC/(QqQ)MS/MS in selected reaction monitoring (SRM) allowed to reach limits of detection at pg/g levels. Two SRM transitions were acquired for each analyte to ensure reliable identification of compounds detected in samples. Confirmation of positive findings was performed by GC coupled to high‐resolution time‐of‐flight mass spectrometry (GC/TOFMS). The accurate mass information provided by GC/TOFMS in full acquisition mode together with its high mass resolution makes it a powerful analytical tool for the unequivocal confirmation of PAHs in the matrices tested. The method developed was applied to the analysis of real‐world samples of each matrix studied with the result of detecting and confirming the majority of analytes at the µg/kg level by both QqQ and TOF mass spectrometers. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
Steroid sex hormones and related synthetic compounds have been shown to provoke alarming estrogenic effects in aquatic organisms, such as feminization, at very low concentrations (ng/L or pg/L). In this work, different chromatographic techniques, namely, gas chromatography/mass spectrometry (GC/MS), liquid chromatography/mass spectrometry (LC/MS) and liquid chromatography/tandem mass spectrometry (LC/MS/MS), are discussed for the analysis of estrogens, both free and conjugated, and progestogens, and the sensitivities achieved with the various techniques are inter-compared. GC/MS analyses are usually carried out after derivatization of the analytes with bis(trimethylsilyl)trifluoroacetamide (BSTFA). For LC/MS and LC/MS/MS analyses, different instruments, ionization techniques (electrospray (ESI) and atmospheric pressure chemical ionization (APCI)), ionization modes (negative ion (NI) and positive ion (PI)) and monitoring modes (selected ion monitoring (SIM) and selected reaction monitoring (SRM)) are generally employed. Based on sensitivity and selectivity, LC/ESI-MS/MS is generally the method of choice for determination of estrogens in the NI mode and of progestogens in the PI mode (instrumental detection limits (IDLs) 0.1-10 ng/mL). IDLs achieved by LC/ESI-MS in the SIM mode and by LC/ESI-MS/MS in the SRM mode were, in general, comparable, although the selectivity of the latter is significantly higher and essential to avoid false positive determinations in the analysis of real samples. Conclusions and future perspectives are outlined.  相似文献   

6.
During routine liquid chromatography/tandem mass spectrometric (LC/MS/MS) bioanalysis of a small molecule analyte in rat serum samples from a toxicokinetic study, an unexpected interfering peak was observed in the extracted ion chromatogram of the internal standard. No interfering peaks were observed in the extracted ion chromatogram of the analyte. The dose‐dependent peak area response and peak area response versus time profiles of the interfering peak suggested that it might have been related to a metabolite of the dosed compound. Further investigation using high‐resolution mass spectrometry led to unequivocal identification of the interfering peak as an N‐desmethyl metabolite of the parent analyte. High‐resolution mass spectrometry (HRMS) was also used to demonstrate that the interfering response of the metabolite in the multiple reaction monitoring (MRM) channel of the internal standard was due to an isobaric relationship between the 13C‐isotope of the metabolite and the internal standard (i.e., common precursor ion mass), coupled with a metabolite product ion with identical mass to the product ion used in the MRM transition of the internal standard. These results emphasize (1) the need to carefully evaluate internal standard candidates with regard to potential interferences from metabolites during LC/MS/MS method development, validation and bioanalysis of small molecule analytes in biological matrices; (2) the value of HRMS as a tool to investigate unexpected interferences encountered during LC/MS/MS analysis of small molecules in biological matrices; and (3) the potential for interference regardless of choice of IS and therefore the importance of conducting assay robustness on incurred in vitro or in vivo study samples. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
The selectivity of mass traces obtained by monitoring liquid chromatography coupled to high resolution mass spectrometry (LC-HRMS) and liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) was compared. A number of blank extracts (fish, pork kidney, pork liver and honey) were separated by ultra performance liquid chromatography (UPLC). Detected were some 100 dummy transitions respectively dummy exact masses (traces). These dummy masses were the product of a random generator. The range of the permitted masses corresponded to those which are typical for analytes (e.g. veterinary drugs). The large number of monitored dummy traces ensured that endogenous compounds present in the matrix extract, produced a significant number of detectable chromatographic peaks. All obtained chromatographic peaks were integrated and standardized. Standardisation was done by dividing these absolute peak areas by the average response of a set of 7 different veterinary drugs. This permitted a direct comparison between the LC-HRMS and LC-MS/MS data. The data indicated that the selectivity of LC-HRMS exceeds LC-MS/MS, if high resolution mass spectrometry (HRMS) data is recorded with a resolution of 50,000 full width at half maximum (FWHM) and a corresponding mass window. This conclusion was further supported by experimental data (MS/MS based trace analysis), where a false positive finding was observed. An endogenous matrix compound present in honey matrix behaved like a banned nitroimidazole drug. This included identical retention time and two MRM traces, producing an MRM ratio between them, which perfectly matched the ratio observed in the external standard. HRMS measurement clearly resolved the interfering matrix compound and unmasked the false positive MS/MS finding.  相似文献   

8.
We report a qualitative liquid chromatography–tandem mass spectrometry (LC/MS/MS) method for the simultaneous analysis of the three known N,N‐dimethyltryptamine endogenous hallucinogens, their precursors and metabolites, as well as melatonin and its metabolic precursors. The method was characterized using artificial cerebrospinal fluid (aCSF) as the matrix and was subsequently applied to the analysis of rat brain pineal gland‐aCSF microdialysate. The method describes the simultaneous analysis of 23 chemically diverse compounds plus a deuterated internal standard by direct injection, requiring no dilution or extraction of the samples. The results demonstrate that this is a simple, sensitive, specific and direct approach to the qualitative analysis of these compounds in this matrix. The protocol also employs stringent MS confirmatory criteria for the detection and confirmation of the compounds examined, including exact mass measurements. The excellent limits of detection and broad scope make it a valuable research tool for examining the endogenous hallucinogen pathways in the central nervous system. We report here, for the first time, the presence of N,N‐dimethyltryptamine in pineal gland microdialysate obtained from the rat. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
A novel derivatization method was developed for the simultaneous determination of six acidic metabolites of catecholamine and serotonin by gas chromatography–mass spectrometry (GC‐MS). The metabolites were converted to O‐ethoxycarbonyl/tert‐butyldimethylsilyl (EOC/TBDMS) derivatives for the direct GC‐MS analysis in selected ion monitoring mode. Their mass spectral pattern as EOC/TBDMS derivatives showed characteristic fragment ions of [M – 15]+ and [M – 57]+, which permitted rapid and accurate structural confirmation of acidic metabolites. The present method was linear (r ≥ 0.998), reproducible (percentage relative standard deviation = 1.0–10.0) and accurate (% relative error = ?9.7–9.8) with detection limits of 0.001–4.7 ng/mL. When applied to human urine samples, the method allowed simultaneous determination of six acidic metabolites of catecholamine and serotonin. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
Recent advances in liquid chromatography/tandem mass spectrometry (LC/MS/MS) technology have provided an opportunity for the development of more specific approaches to achieve the ‘screen’ and ‘confirmation’ goals in a single analytical step. For this purpose, this study adapts the electrospray ionization ion trap LC/MS/MS instrumentation (LC/ESI‐MS/MS) for the screening and confirmation of over 800 drugs and toxic compounds in biological specimens. Liquid‐liquid and solid‐phase extraction protocols were coupled to LC/ESI‐MS/MS using a 1.8‐µm particle size analytical column operated at 50°C. Gradient elution of the analytes was conducted using a solvent system composed of methanol and water containing 0.1% formic acid. Positive‐ion ESI‐MS/MS spectra and retention times for each of the 800 drugs and toxic compounds were first established using 1–10 µg/mL standard solutions. This spectra and retention time information was then transferred to the library and searched by the identification algorithm for the confirmation of compounds found in test specimens – based on retention time matches and scores of fit, reverse fit, and purity resulting from the searching process. The established method was found highly effective when applied to the analyses of postmortem specimens (blood, urine, and hair) and external proficiency test samples provided by the College of American Pathology (CAP). The development of this approach has significantly improved the efficiency of our routine laboratory operation that was based on a two‐step (immunoassay and GC/MS) approach in the past. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
Metabolomics is a rapidly growing field in the comprehensive understanding of cellular and organism‐specific responses associated with perturbations induced by medicines, chemicals and environment. Blood matrices are frequently used in clinical and biological studies. In this study, we compared metabolic profiling between rat plasma and serum using complementary platforms of gas chromatography–mass spectrometry (GC‐MS) and liquid chromatography–quadruple time‐of‐flight–mass spectrometry (LC‐QTOF‐MS). The sample types that were tested included plasma prepared with K2EDTA and serum collected using venous blood collection protocols. The results of peak area variation for each detected metabolite/feature in the quality control samples showed a good reproducibility in LC‐QTOF‐MS and better reproducibility in GC‐MS. In GC‐MS analysis: (a) 25.8% of the defined metabolites differed serum from plasma profiling (t‐test, p < 0.05); and (b) serum possessed higher sensitivity than plasma for its generally higher peak intensity in the metabolic profiling. In LC‐QTOF‐MS analysis, 13 (in positive ion mode) and seven (in negative ion mode) important metabolites were identified as mainly contributing to the separation between serum and plasma. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
At present, no official criteria exist for drug identification using single quadrupole mass spectrometers although the European Union (EU) criteria for compound identification have been adopted. These criteria are evaluated with respect to the confirmation of cocaine and its metabolites by single quadrupole liquid chromatography/mass spectrometry (LC/MS) and problems are highlighted. Spiked samples, proficiency testing samples, certified reference materials and samples from real cases that had screened positive for cocaine derivatives by immunoassay were subjected to confirmation by LC/MS using single ion monitoring with in‐source fragmentation. The EU criteria for compound identification were applied for the confirmation of cocaine, benzoylecgonine and ecgonine methyl ester. The use of the identification point (IP) system in spiked, proficiency testing samples and certified reference materials provided acceptable results in all cases while in some cases real positive samples did not provide acceptable results. Failure to meet the EU criteria was attributed to low fragmentation at the lower concentrations and the ion suppression effect while both factors affected compliance with the IP system. The identification of cocaine and its metabolites was considerably improved by using a combination of ammonium formate and formic acid as the LC mobile phase. It appears that poor in‐source fragmentation in single quadrupole LC/MS and ion suppression may constitute a problem with drug identification when implementing the IP system in real samples, resulting in false negative results. Further investigation is needed for the use of such IP systems to be suitable for use in LC/MS methods. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
A new and reliable two‐step liquid chromatography/tandem mass spectrometry (LC/MS/MS) method in combination with gas chromatography/mass spectrometry (GC/MS) for the screening and confirmation of adrafinil and its major metabolites, modafinil and modafinil acid, in human urine has been developed and validated. The method involved reversed‐phase C18 solid‐phase extraction (SPE) cartridge extraction and MS analysis by means of LC/MS/MS and GC/MS. The study illustrated that the ESI capillary temperature played a key role in the formation of the protonated molecule. The limits of detection (LODs) of the developed method for the three compounds were lower than the minimum required performance limit (MRPL) of the World Anti‐Doping Agency (WADA). The human urine samples obtained after the oral administration of modafinil and from the Beijing 2008 Olympic Games were analyzed by using the described method, which has also been successfully applied to routine analyses and the WADA Proficiency Test. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
Compound 27 {1, 12‐bis[4‐(4‐amino‐6,7‐dimethoxyquinazolin‐2‐yl)piperazin‐1‐yl]dodecane‐1,12‐dione} is a novel small molecule agonist of EphA2 receptor tyrosine kinase. It showed much improved activity for the activation of EphA2 receptor compared with the parental compound doxazosin. To support further pharmacological and toxicological studies of the compound, a method using liquid chromatography and electrospray ionization tandem mass spectrometry (LC–MS/MS) has been developed for the quantification of this compound. Liquid–liquid extraction was used to extract the compound from mouse plasma and brain tissue homogenate. Reverse‐phase chromatography with gradient elution was performed to separate compound 27 from the endogenous molecules in the matrix, followed by MS detection using positive ion multiple reaction monitoring mode. Multiple reaction monitoring transitions m/z 387.3 → 290.1 and m/z 384.1 → 247.1 were selected for monitoring compound 27 and internal standard prazosin, respectively. The linear calibration range was 2–200 ng/mL with the intra‐ and inter‐day precision and accuracy within the acceptable range. This method was successfully applied to the quantitative analysis of compound 27 in mouse plasma and brain tissue with different drug administration routes.  相似文献   

15.
Hydroxylated polybrominated diphenyl ether (OH‐PBDEs) metabolites have the potential to cause endocrine disruption as well as other health effects. Currently, gas chromatography/mass spectrometry (GC/MS) after derivatization is used for the analysis of OH‐PBDEs. However, there is a need for the direct analysis of OH‐PBDEs at relatively low concentrations in environmental and biological samples. Liquid chromatography with atmospheric pressure chemical ionization tandem mass spectrometry (LC/APCI‐MS/MS) was evaluated for the analysis of nine OH‐PBDEs, ranging from tri‐ to hexabrominated. Separation of the nine isomeric metabolites was achieved with reversed‐phase liquid chromatography, followed by detection by APCI‐MS in negative mode. Notably, a significant decrease in ionization was observed in 6‐hydroxyl‐substituted PBDE metabolites in the presence of an ortho‐substituted bromine, relative to the other hydroxylated metabolites. This is probably due to the formation of dioxins in the source as a result of the high‐temperature conditions, which prevented ionization by hydrogen abstraction. The MS/MS experiments also provided evidence of the neutral losses of HBr and Br2, indicating the possible use of neutral loss scanning and selected reaction monitoring (SRM) for the screening of brominated metabolites in samples. The applicability of LC/APCI‐MS/MS was demonstrated for the analysis of metabolites of BDEs 47 and 99 formed in human liver microsomes. The LC/APCI‐MS/MS method was able to detect metabolites that had previously been identified by GC/MS following derivatization. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
Total phenolic choline ester fractions prepared from seeds of Arabidopsis thaliana and Brassica napus were analyzed by capillary LC/ESI‐QTOF‐MS and direct infusion ESI‐FTICR‐MS. In addition to the dominating sinapoylcholine, 30 phenolic choline esters could be identified based on accurate mass measurements, interpretation of collision‐induced dissociation (CID) mass spectra, and synthesis of selected representatives. The compounds identified so far include substituted hydroxycinnamoyl‐ and hydroxybenzoylcholines, respective monohexosides as well as oxidative coupling products of phenolic choline esters and monolignols. Phenolic choline esters are well separable by reversed‐phase liquid chromatography and sensitively detectable using electrospray ionization mass spectrometry in positive ion mode. CID mass spectra obtained from molecular ions facilitate the characterization of both the type and substitution pattern of such compounds. Therefore, LC/ESI‐MS/MS represents a valuable tool for comprehensive qualitative and quantitative analysis of this compound class. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
An emerging trend is recognised in hormone and veterinary drug residue analysis from liquid chromatography tandem mass spectrometry (LC/MS/MS) based screening and confirmation towards accurate mass alternatives such as LC coupled with time-of-flight (TOF), Fourier transform ion cyclotron resonance (FTICR) or Fourier transform orbitrap (FT Orbitrap) MS. In this study, mass resolution and accuracy are discussed for LC/MS screening and confirmation of targeted analytes and for the identification of unknowns using the anabolic steroid stanozolol and the designer beta-agonist "Clenbuterol-R" as model substances. It is shown theoretically and experimentally that mass accuracy criteria without proper mass resolution criteria yield false compliant (false negative) results, both in MS screening and MS/MS confirmation of stanozolol. On the other hand, previous medium resolution accurate mass TOFMS/MS data of the designer beta-agonist were fully confirmed by high resolution FT Orbitrap MS(n) experiments. A discussion is initiated through a proposal for additional criteria for the use of accurate mass LC/MS technologies, to be implemented in Commission Decision 2002/657/EC.  相似文献   

18.
Accurate mass measurement (used to determine elemental formulae) is an essential tool for impurity identification in pharmaceutical development for process understanding. Accurate mass liquid chromatography/mass spectrometry (LC/MS) is used widely for these types of analyses; however, there are still many occasions when gas chromatography (GC)/MS is the appropriate technique. Therefore, the provision of robust technology to provide accurate mass GC/MS (and GC/MS/MS) for this type of activity is essential. In this report we describe the optimisation and application of a newly available atmospheric pressure chemical ionisation (APCI) interface to couple GC to time‐of‐flight (TOF) MS. To fully test the potential of the new interface the APCI source conditions were optimised, using a number of standard compounds, with a variety of structures, as used in synthesis at AstraZeneca. These compounds were subsequently analysed by GC/APCI‐TOF MS. This study was carried out to evaluate the range of compounds that are amenable to analysis using this technique. The range of compounds that can be detected and characterised using the technique was found to be extremely broad and include apolar hydrocarbons such as toluene. Both protonated molecules ([M + H]+) and radical cations (M+.) were observed in the mass spectra produced by APCI, along with additional ion signals such as [M + H + O]+. The technique has been successfully applied to the identification of impurities in reaction mixtures from organic synthesis in process development. A typical mass accuracy of 1–2 mm/zunits (m/z 80–500) was achieved allowing the reaction impurities to be identified based on their elemental formulae. These results clearly demonstrate the potential of the technique as a tool for problem solving and process understanding in pharmaceutical development. The reaction mixtures were also analysed by GC/electron ionisation (EI)‐MS and GC/chemical ionisation (CI)‐MS to understand the capability of GC/APCI‐MS relative to these two firmly established techniques. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
Systematic toxicological analysis (STA) is aimed at detecting and identifying all substances of toxicological relevance (i.e. drugs, drugs of abuse, poisons and/or their metabolites) in biological material. Particularly, gas chromatography–mass spectrometry (GC/MS) represents a competent and commonly applied screening and confirmation tool. Herein, we present an untargeted liquid chromatography–tandem mass spectrometry (LC/MS/MS) assay aimed to complement existing GC/MS screening for the detection and identification of drugs in blood, plasma and urine samples. Solid-phase extraction was accomplished on mixed-mode cartridges. LC was based on gradient elution in a miniaturized C18 column. High resolution electrospray ionization-MS/MS in positive ion mode with data-dependent acquisition control was used to generate tandem mass spectral information that enabled compound identification via automated library search in the “Wiley Registry of Tandem Mass Spectral Data, MSforID”. Fitness of the developed LC/MS/MS method for application in STA in terms of selectivity, detection capability and reliability of identification (sensitivity/specificity) was demonstrated with blank samples, certified reference materials, proficiency test samples, and authentic casework samples.  相似文献   

20.
Erythrocyte alkylresorcinols (5‐alkyl‐1,3‐dihydroxybenzenes) are potential biomarkers of wholegrain wheat and rye intake. However, their high‐throughput quantitative analysis by gas chromatography/mass spectrometry (GC/MS) is hindered by the time‐consuming sample preparation and, more importantly, by interfering compounds that still remain after sample cleanup. In the present work we describe a gas chromatography/tandem mass spectrometry (GC/MS/MS) method for the rapid and reliable quantification of alkylresorcinols in erythrocyte samples. The performance of the GC/MS/MS method is compared with that of GC/MS. The main characteristics of the method are: lower limits of detection: 2–10 µg/L standard solution; lower limits of quantification: 6–30 µg/L standard solution; linearity coefficients: 0.9611–0.9888; linear ranges: 2–20 µg/L in erythrocytes; and intra‐day precisions (n = 6): 4–13% at endogenous analyte levels in non‐spiked erythrocytes. Tandem mass spectrometry showed greatly improved selectivity over single‐stage mass spectrometry in the case of erythrocyte samples, eliminating all interferences detectable in single‐stage MS and enabling simple peak integration for quantification. Moreover, increased selectivity resulted in GC separation speeded up by a factor of two, allowing the duplicate analysis of over 40 samples per day. This GC/MS/MS method is suggested as an improved alternative to GC/MS for the quantification of alkylresorcinols in erythrocytes for assessing wholegrain wheat and rye intake. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号