首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new tandem time‐of‐flight mass spectrometer with an electrospray ionization ion source ‘ESI‐TOF/quadTOF’ was designed and constructed to achieve the desired aim of structural elucidation via high‐energy collision‐induced dissociation (CID), and the simultaneous detection of all fragment ions. The instrument consists of an orthogonal acceleration‐type ESI ion source, a linear TOF mass spectrometer, a collision cell, a quadratic‐field ion mirror and a microchannel plate detector. High‐energy CID spectra of doubly protonated angiotensin II and bradykinin were obtained. Several fragment ions such as a‐, d‐, v‐ and w‐type ions, characteristic of high‐energy CID, were clearly observed in these spectra. These high‐energy CID fragment ions enabled confirmation of the complete sequence, including leucine–isoleucine determinations. It was demonstrated that high‐energy CID of multiply protonated peptides could be achieved in the ESI‐TOF/quadTOF. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
A novel MALDI-TOF mass spectrometer that utilizes a spiral ion trajectory was developed. In this mass spectrometer, the ions sequentially passed through four toroidal electrostatic sectors and revolved along a figure-eight-shaped orbit on a particular projection plane. Each toroidal electrostatic sector had eight stories, and during multiple revolutions, the ion trajectory shifted perpendicular to the projection plane in every cycle, thereby generating a spiral trajectory. The flight path length of one cycle was 2.1 m; therefore, when the ions completed eight cycles, the total flight path length was 17 m. By adopting an ion optical system that had a flight path length five times longer than that in the commonly used reflectron ion optical system, the mass dependence on the mass resolving power was reduced, while improving the mass accuracy of the mass measurements. The basic performance of the system was tested by using standard peptides or the tryptic digest of bovine serum albumin. A mass resolving power of 80,000 (full width at half maximum) was achieved at m/z = 2564 (ACTH18-39). An improved mass accuracy less than 2 ppm was realized over a wide m/z range of 500 to 3000 by correction using one or two internal standard substances.  相似文献   

3.
Designs of a quadrupole ion trap (QIT) as a source for time‐of‐flight (TOF) mass spectrometry are evaluated for mass resolution, ion trapping, and laser activation of trapped ions. Comparisons are made with the standard hyperbolic electrode ion trap geometry for TOF mass analysis in both linear and reflectron modes. A parallel‐plate design for the QIT is found to give significantly improved TOF mass spectrometer performance. Effects of ion temperature, trapped ion cloud size, mass, and extraction field on mass resolution are investigated in detail by simulation of the TOF peak profiles. Mass resolution (mm) values of several thousand are predicted even at room temperature with moderate extraction fields for the optimized design. The optimized design also allows larger radial ion collection size compared with the hyperbolic ion trap, without compromising the mass resolution. The proposed design of the QIT also improves the ion–laser interaction volume and photon collection efficiency for fluorescence measurements on trapped ions. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
The mass resolution of a time-of-flight (TOF) mass spectrometer is directly proportional to its total flight pathlength. Multi-turn or multi-passage ion optical geometries are necessary to obtain fight distances of sufficient length within reasonable size limitations. We have investigated ion optics for a multi-turn TOF mass spectrometer with electrostatic sectors. The concept of 'perfect' focusing conditions is introduced. Furthermore, a new type of multi-turn TOF mass spectrometer, the MULTUM Linear plus, was developed. It consists of four cylindrical electric sectors and 28 electric quadrupole lenses. It has a vacuum chamber 60 x 70 x 20 cm in size. Mass resolution is demonstrated to increase according to the number of ion cycles. A mass resolution of 350 000 (m/z = 28, FWHM) was achieved after 501.5 cycles. The MULTUM Linear plus analyzer is not simple, however; 28 electric quadrupole lenses are used. In order to reduce the number of ion optical parts, an improved multi-turn TOF mass spectrometer, the MULTUM II, consisting of only four toroidal electric sectors, was also developed. The possibility of tandem mass spectrometric applications using multi-turn TOF mass spectrometers is also discussed.  相似文献   

5.
In this study, we have developed a tandem time-of-flight mass spectrometry (TOF/TOF) technique involving the use of a matrix-assisted laser desorption/ionization ion source that exhibits high precursor ion selectivity. An ion optical system with a 17 m spiral ion trajectory was used in the first time-of-flight mass spectrometer. High precursor ion selectivity was achieved by realizing a 15 m flight path, which is considerably longer than that of the conventional MALDI-TOF/TOF before the precursor ion selection by an ion gate; monoisotopic ions could be selected properly up to m/z 2500. Furthermore, the first time-of-flight mass spectrometer was composed of electrostatic sectors and could eliminate post-source decay (PSD) ions. Precursor ions with 20 keV kinetic energy were selected and injected into a collision cell, leading to the generation of fragment ions by high-energy collision-induced dissociation (HE-CID). The optimized second time-of-flight mass spectrometer included a post-acceleration region and an offset parabolic reflectron to record product ion spectra in the entire mass range. Our system could generate a simple HE-CID product ion spectrum because each fragment pathway could be observed as a single peak by the selection of monoisotopic ions of all precursor ions and HE-CID fragment pathways could be predominantly observed by the PSD ion elimination.  相似文献   

6.
We investigated the application of a high‐resolution Orbitrap mass spectrometer equipped with an electrospray ionization (ESI) source and a matrix‐assisted laser desorption/ionization‐time‐of‐flight (MALDI‐TOF) mass spectrometer to the metabolite profiling of a model small interfering RNA (siRNA) duplex TSR#34 and compared their functions and capabilities. TSR#34 duplex was incubated in human serum in vitro, and the duplex and its metabolites were then purified by ion exchange chromatography in order to remove the biological matrices. The fraction containing the siRNA duplex and its metabolites was collected and desalted and then subjected to high‐performance liquid chromatography (HPLC) equipped with a reversed phase column. The siRNA and its metabolites were separated into single strands by elevated chromatographic temperature and analyzed using the ESI‐Orbitrap or the MALDI‐TOF mass spectrometer. Using this method, the 5' and/or 3' truncated metabolites of each strand were detected in the human serum samples. The ESI‐Orbitrap mass spectrometer enabled differentiation between two possible RNA‐based sequences, a monoisotopic molecular mass difference which was less than 2 Da, with an intrinsic mass resolving power. In‐source decay (ISD) analysis using a MALDI‐TOF mass spectrometer allowed the sequencing of the RNA metabolite with characteristic fragment ions, using 2,4‐dihydroxyacetophenone (2,4‐DHAP) as a matrix. The ESI‐Orbitrap mass spectrometer provided the highest mass accuracy and the benefit of on‐line coupling with HPLC for metabolite profiling. Meanwhile, the MALDI‐TOF mass spectrometer, in combination with 2,4‐DHAP, has the potential for the sequencing of RNA by ISD analysis. The combined use of these methods will be beneficial to characterize the metabolites of therapeutic siRNA compounds. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
In order to have overall chemical material information of Kai‐Xin‐San (KXS), the reliable ultra‐high‐performance liquid chromatography quadrupole time‐of‐flight mass spectrometer (UHPLC–Q‐TOF‐MS) and ultra‐fast liquid chromatography mass spectrometer (UFLC‐MS/MS) methods were developed for the identification and determination of the major constituents in KXS. Moreover, the UHPLC–Q‐TOF‐MS method was also applied to screen for multiple absorbed components in rat plasma after oral administration of KXS. The UHPLC–Q‐TOF‐MS method was achieved on Agilent 6520 Q‐TOF mass and operated in the negative ion mode. Good separation was performed on a ZORBAX Eclipse Plus C18 column with a gradient elution at a flow rate of 0.2 ml/min. A total of 92 compounds in KXS were identified or tentatively characterized based on their exact molecular weights, fragmentation patterns, and literature data. A total of 26 compounds including 23 prototype components and three metabolites were identified in rat plasma after oral administration of KXS. Then, 16 major bioactive constituents were chosen as the benchmark substances to evaluate the quality of KXS. Their quantitative analyses were performed by a triple quadrupole tandem mass spectrometer (MS/MS) operating in multiple‐reaction monitoring mode(MRM). The analysis was completed with a gradient elution at a flow rate of 0.4 ml/min within 35 min. The simple and fast method was validated and showed good linearity, precision, and recovery. Furthermore, the method was successful applied for the determination of 16 compounds in KXS. All results would provide essential data for identification and quality control of active chemical constituents in KXS. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
A skin sample from a South‐Andean mummy dating back from the XIth century was analyzed using time‐of‐flight secondary ion mass spectrometry imaging using cluster primary ion beams (cluster‐TOF‐SIMS). For the first time on a mummy, skin dermis and epidermis could be chemically differentiated using mass spectrometry imaging. Differences in amino‐acid composition between keratin and collagen, the two major proteins of skin tissue, could indeed be exploited. A surprising lipid composition of hypodermis was also revealed and seems to result from fatty acids damage by bacteria. Using cluster‐TOF‐SIMS imaging skills, traces of bio‐mineralization could be identified at the micrometer scale, especially formation of calcium phosphate at the skin surface. Mineral deposits at the surface were characterized using both scanning electron microscopy (SEM) in combination with energy‐dispersive X‐ray spectroscopy and mass spectrometry imaging. The stratigraphy of such a sample was revealed for the first time using this technique. More precise molecular maps were also recorded at higher spatial resolution, below 1 µm. This was achieved using a non‐bunched mode of the primary ion source, while keeping intact the mass resolution thanks to a delayed extraction of the secondary ions. Details from biological structure as can be seen on SEM images are observable on chemical maps at this sub‐micrometer scale. Thus, this work illustrates the interesting possibilities of chemical imaging by cluster‐TOF‐SIMS concerning ancient biological tissues. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
A new time-of-flight (TOF) mass spectrometer with a corkscrew ion trajectory was designed and constructed. The spiral trajectory was realized by using four toroidal electrostatic sectors. Each had fifteen-stories made of sixteen Matsuda plates piled up inside a cylindrical electrostatic sector. The ions passed the four toroidal electrostatic sectors sequentially and revolved along a figure-eight-shaped orbit on a certain projection plane. During the multiple revolutions, each ion trajectory was shifted by 50 mm per cycle on a direction perpendicular to the projection plane, thus generating a spiral trajectory. The flight path length of one cycle was 1.308 m so that the maximum flight path length became approximately 20 m. The mass resolution, mass accuracy, and ion transmission were tested by utilizing an orthogonally coupled electron ionization source. A mass resolution of 35,000 (FWHM) for m/z greater than 300 was achieved. Even in a lower mass region, mass resolutions of more than 20,000 (FWHM) were confirmed with a doublet of (12)C(5)(1)H(5)(14)N(+) and (13)C(12)C(5)(1)H(6)(+). The mass accuracy was also improved such that it was better than 1 ppm with only one internal standard peak. An ion transmission of approximately of 100% was observed for 15 cycles.  相似文献   

10.
In this work, rapid‐resolution liquid chromatography (RRLC) coupled to electrospray ionization time‐of‐flight mass spectrometry (ESI‐TOF‐MS) and ion trap multiple mass spectrometry (IT‐MSn) has been applied to separate and characterize eleven isomers of oleuropein aglycon in fourteen Spanish extra‐virgin olive oils. After the extra‐virgin olive oil sample had been dissolved in hexane and cleaned up by a diol‐bonded phase solid‐phase extraction (SPE) cartridge, the eluting extract was resolved in methanol and analyzed on an Angilent 1200 system with a 4.6 × 150 mm, 1.8 µm Zorbax Eclipse plus C18 column. Mass spectrometry was carried out on a Bruker Daltonics microTOF mass spectrometer and a Bruker Daltonics ion trap mass spectrometer. The characterization of isomers of oleuropein aglycon was based on accurate mass data and the isotope function of characteristic fragment ions in the studied compounds by TOF‐MS, and the fragment ions were further confirmed by IT‐MSn. The fragmentation pathway of oleuropein aglycon was successfully elucidated and all possible transformations among isomers of oleuropein aglycon were suggested. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

11.
A new system incorporating a multi-turn time-of-flight secondary ion/sputtered neutral mass spectrometer (TOF-SIMS/SNMS) with laser post-ionization was designed and constructed. This system consists of a gallium focused ion beam, femtosecond (fs) laser for post-ionization, and multi-turn TOF mass spectrometer. When laser post-ionization was used, the secondary ion signal strengths for several metals increased by up to 650 times, and were greater than the values obtained in conventional TOF-SIMS experiments. Use of the multi-turn mass spectrometer resulted in an increase in mass resolving power with increase in the total TOF. The mass resolving power reached to 23,000 after 800 multi-turn cycles, corresponding to a flight path length of 1040 m. These results indicated that this system is very effective for the analysis of valuable materials such as space samples with high sensitivity, high mass resolving power, and high lateral resolution.   相似文献   

12.
In‐source collision‐induced dissociation (CID) is commonly used with single‐stage high‐resolution mass spectrometers to gather both a molecular formula and structural information through the collisional activation of analytes with residual background gas in the source region of the mass spectrometer. However, unlike tandem mass spectrometry, in‐source CID does not involve an isolation step prior to collisional activation leading to a product ion spectrum composed of fragment ions from any analyte present during the activation event. This work provides the first comparison of in‐source CID and beam‐type CID spectra of emerging synthetic drugs on the same instrument to understand the fragmentation differences between the two techniques and to contribute to the scientific foundations of in‐source CID. Electrospray ionization–quadrupole time‐of‐flight (ESI‐Q‐TOF) mass spectrometry was used to generate product ion spectra from in‐source CID and beam‐type CID for a series of well‐characterized fentanyl analogs and synthetic cathinones. A comparison between the fragmentation patterns and relative ion abundances for each technique was performed over a range of fragmentor offset voltages for in‐source CID and a range of collision energies for beam‐type CID. The results indicate that large fragmentor potentials for in‐source CID tend to favor higher energy fragmentation pathways that result in both kinetically favored pathways and consecutive neutral losses, both of which produce more abundant lower mass product ions relative to beam‐type CID. Although conditions can be found in which in‐source CID and beam‐type CID provide similar overall spectra, the in‐source CID spectra tend to contain elevated noise and additional chemical background peaks relative to beam‐type CID.  相似文献   

13.
We present an effective procedure to differentiate instrumental artefacts, such as parasitic ions, memory effects, and real trace impurities contained in inert gases. Three different proton transfer reaction mass spectrometers were used in order to identify instrument‐specific parasitic ions. The methodology reveals new nitrogen‐ and metal‐containing ions that up to date have not been reported. The parasitic ion signal was dominated by [N2]H+ and [NH3]H+ rather than by the common ions NO+ and O2+. Under dry conditions in a proton transfer reaction quadrupole interface time‐of‐flight mass spectrometer (PTR‐QiTOF), the ion abundances of [N2]H+ were elevated compared with the signals in the presence of humidity. In contrast, the [NH3]H+ ion did not show a clear humidity dependency. On the other hand, two PTR‐TOF1000 instruments showed no significant contribution of the [N2]H+ ion, which supports the idea of [N2]H+ formation in the quadrupole interface of the PTR‐QiTOF. Many new nitrogen‐containing ions were identified, and three different reaction sequences showing a similar reaction mechanism were established. Additionally, several metal‐containing ions, their oxides, and hydroxides were formed in the three PTR instruments. However, their relative ion abundancies were below 0.03% in all cases. Within the series of metal‐containing ions, the highest contribution under dry conditions was assigned to the [Fe(OH)2]H+ ion. Only in one PTR‐TOF1000 the Fe+ ion appeared as dominant species compared with the [Fe(OH)2]H+ ion. The present analysis and the resulting database can be used as a tool for the elucidation of artefacts in mass spectra and, especially in cases, where dilution with inert gases play a significant role, preventing misinterpretations.  相似文献   

14.
This work discusses the correlation between the mass resolving power of matrix‐assisted laser desorption/ionization time‐of‐flight mass analyzers and extraction condition with an uneven sample morphology. Previous theoretical calculations show that the optimum extraction condition for flat samples involves an ideal ion source design and extraction delay. A general expression of spectral feature takes into account ion initial velocity, and extraction delay is derived in the current study. The new expression extends the comprehensive calculation to uneven sample surfaces and above 90% Maxell‐Boltzmann initial velocity distribution of ions to account for imperfect ionization condition. Calculation shows that the impact of uneven sample surface or initial spatial spread of ions is negligible when the extraction delay is away from the ideal value. When the extraction delay approaches the optimum value, the flight‐time topology shows a characteristic curve shape, and the time‐domain mass spectral feature broadens with an increase in initial spatial spread of ions. For protonated 2,5‐dihydroxybenzoic acid, the mass resolving power obtained from a sample of 3‐μm surface roughness is approximately 3.3 times lower than that of flat samples. For ions of m/z 3000 coexpanded with 2,5‐dihydroxybenzoic acid, the mass resolving power in the 3‐μm surface roughness case only reduces roughly 7%. Comprehensive calculations also show that the mass resolving power of lighter ions is more sensitive to the accuracy of the extraction delay than heavier ions.  相似文献   

15.
This paper focuses on development of time‐of‐flight (TOF) mass spectrometry in response to the invention of matrix‐assisted laser desorption/ionization (MALDI). Before this breakthrough ionization technique for nonvolatile molecules, TOF was generally considered as a useful tool for exotic studies of ion properties but was not widely applied to analytical problems. Improved TOF instruments and software that allow the full potential power of MALDI to be applied to difficult biological applications are described. A theoretical approach to the design and optimization of MALDI‐TOF instruments for particular applications is presented. Experimental data are provided that are in excellent agreement with theoretical predictions of resolving power and mass accuracy. Data on sensitivity and dynamic range using kilohertz laser rates are also summarized. These results indicate that combinations of high‐performance MALDI‐TOF and TOF‐TOF with off‐line high‐capacity separations may ultimately provide throughput and dynamic range several orders of magnitude greater than those currently available with electrospray LC‐MS and MS‐MS. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
The time‐dependent reacceleration of product ions produced as a result of dissociation of a single precursor ion in a tandem time‐of‐flight mass spectrometer is considered for the first time. Analytical expressions for the shapes of electric pulses bringing all the kinetic energies of the product ions to the same value are derived for two cases: forward acceleration mode and deceleration, followed by re‐acceleration in the reversed direction (reversed mode). Secondary time‐of‐flight focusing resulting from the re‐acceleration in the reversed mode is shown to be mass‐dependent and, when averaged over a wide mass range, the focusing is tight enough to provide mass resolution exceeding 10 000. After time‐dependent re‐acceleration, additional compression of the ion packet width leading to better mass resolution can be obtained by decelerating the ions in a constant field. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
Metabolism studies play an important role at various stages of drug discovery and development. Liquid chromatography combined with mass spectrometry (LC/MS) has become a most powerful and widely used analytical tool for identifying drug metabolites. The suitability of different types of mass spectrometers for metabolite profiling differs widely, and therefore, the data quality and reliability of the results also depend on which instrumentation is used. As one of the latest LC/MS instrumentation designs, hybrid ion trap/time‐of‐flight MS coupled with LC (LC‐IT‐TOF‐MS) has successfully integrated ease of operation, compatibility with LC flow rates and data‐dependent MSn with high mass accuracy and mass resolving power. The MSn and accurate mass capabilities are routinely utilized to rapidly confirm the identification of expected metabolites or to elucidate the structures of uncommon or unexpected metabolites. These features make the LC‐IT‐TOF‐MS a very powerful analytical tool for metabolite identification. This paper begins with a brief introduction to some basic principles and main properties of a hybrid IT‐TOF instrument. Then, a general workflow for metabolite profiling using LC‐IT‐TOF‐MS, starting from sample collection and preparation to final identification of the metabolite structures, is discussed in detail. The data extraction and mining techniques to find and confirm metabolites are discussed and illustrated with some examples. This paper is directed to readers with no prior experience with LC‐IT‐TOF‐MS and will provide a broad understanding of the development and utility of this instrument for drug metabolism studies. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
Poly(2‐ethyl‐2‐oxazoline), a synthetic polymer was analysed by mass spectrometry using different ion sources. Two distributions could be identified in the mass spectra which related to two different polymer series (one with hydrogen and hydroxyl end‐groups and the other with methyl and hydroxyl end‐groups). The fragmentation behaviour of the protonated oligomers was studied in a quadrupole time‐of‐flight mass spectrometer (MS) with electrospray, atmospheric pressure chemical ionization and direct analysis in real time soft ionization techniques. Three product ion series were identified in the MS/MS spectra independently of the ion source used. Based on the results, a mechanism was proposed for the dissociation by means of the accurate mass of the product ions, pseudo MS3 experiments and the energy dependence of the product ion intensity, i.e. breakdown curves. The survival yield method was used to highlight the correlation between the size of the oligomers and the laboratory frame collision energy. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
ToF‐SIMS spectra are formed by bombarding a surface with a pulse of primary ions and detecting the resultant ionized surface species using a time‐of‐flight mass spectrometer. Typically, the detector is a time‐to‐digital converter. Once an ion is detected using such detectors, the detector becomes insensitive to the arrival of additional ions for a period termed as the (detector) dead‐time. Under commonly used ToF‐SIMS data acquisition conditions, the time interval over which ions arising from a single chemical species reach the detector is on the order of the detector dead‐time. Thus, only the first ion reaching the detector at any given mass is counted. The event registered by the data acquisition system, then, is the arrival of one or more ions at the detector. This behavior causes ToF‐SIMS data to violate, in the general case, the assumption of linear additivity that underlies many multivariate statistical analysis techniques. In this article, we show that high‐mass‐resolution ToF‐SIMS spectral‐image data follow a generalized linear model, and we propose a data transformation and scaling procedure that enables such data sets to be successfully analyzed using standard methods of multivariate image analysis. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

20.
A new high performance linear MALDI‐TOF mass spectrometer provides both high spatial resolution and high speed. This instrument employs a new ion optics system with a grounded ion source and efficient transfer and detection of ions over a broad mass range. This provides very high sensitivity, precision, and an extended dynamic range for both positive and negative ion detection. Here we demonstrate the capabilities of this system by imaging pancreatic tissue samples from rats and mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号