首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this article, we consider the time‐dependent Maxwell's equations in a bounded domain when dispersive media are involved. The Crank‐Nicolson scheme is developed to approximate the electric field equation by Nedelec edge elements and is proved to be optimal convergent in energy norm. The analysis is carried out for Debye medium, but the same results hold true for other dispersive media such as plasma and Lorentz medium. Furthermore, our analysis extends straightforward to cases when a dispersive medium and a simple medium (such as air) are coupled. Mathematics Subject Classification (2000): 65N30, 35L15, 78‐08. © 2007 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2008  相似文献   

2.
In this paper, we study a numerical scheme to solve coupled Maxwell's equations with a nonlinear conductivity. This model plays an important role in the study of type‐II superconductors. The approximation scheme is based on backward Euler discretization in time and mixed conforming finite elements in space. We will prove convergence of this scheme to the unique weak solution of the problem and develop the corresponding error estimates. As a next step, we study the stability of the scheme in the quasi‐static limit ? → 0 and present the corresponding convergence rate. Finally, we support the theory by several numerical experiments. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
The main purpose of the present article is to prove the discrete compactness property for Arnold‐Boffi‐Falk spaces of any order. Results of numerical experiments confirming the theory are also reported. © 2004 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2005  相似文献   

4.
This paper presents an algebraic multigrid method for the efficient solution of the linear system arising from a finite element discretization of variational problems in H0(curl,Ω). The finite element spaces are generated by Nédélec's edge elements. A coarsening technique is presented, which allows the construction of suitable coarse finite element spaces, corresponding transfer operators and appropriate smoothers. The prolongation operator is designed such that coarse grid kernel functions of the curl‐operator are mapped to fine grid kernel functions. Furthermore, coarse grid kernel functions are ‘discrete’ gradients. The smoothers proposed by Hiptmair and Arnold, Falk and Winther are directly used in the algebraic framework. Numerical studies are presented for 3D problems to show the high efficiency of the proposed technique. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

5.
In this paper, Newmark time‐stepping scheme and edge elements are used to numerically solve the time‐dependent scattering problem in a three‐dimensional polyhedral cavity. Finite element methods based on the variational formulation derived in Van and Wood (Adv. Comput. Math., to appear) are considered. Existence and uniqueness of the discrete problem is proved by using Babuska–Brezzi theory. Finite element error estimate and stability of the Newmark scheme are also established. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

6.
We study an induction hardening model described by Maxwell's equations coupled with a heat equation. The magnetic induction field is assumed a nonlinear constitutional relation and the electric conductivity is temperature‐dependent. The Tψ method is to transform Maxwell's equations to the vector–scalar potential formulations and to solve the potentials by means of the finite element method. In this article, we present a fully discrete Tψ finite element scheme for this nonlinear coupled problem and discuss its solvability. We prove that the discrete solution converges to a weak solution of the continuous problem. Finally, we conclude with two numerical experiments for the coupled system.  相似文献   

7.
This article is devoted to the study of a fully discrete A ‐ finite element method to solve nonlinear Maxwell's equations based on backward Euler discretization in time and nodal finite elements in space. The nonlinearity is owing to a field‐dependent conductivity with the power‐law form . We design a nonlinear time‐discrete scheme for approximation in suitable function spaces. We show the well‐posedness of the problem, prove the convergence of the semidiscrete scheme based on the boundedness of the second derivative in the dual space and derive its error estimate. The Minty–Browder technique is introduced to obtain the convergence of the nonlinear term. Finally, we discuss the error estimate for the fully discretized problem and support the theoretical result by two numerical experiments. © 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 30: 2083–2108, 2014  相似文献   

8.
An enhanced finite-difference time-domain (FDTD) algorithm is built to solve the transverse electric two-dimensional Maxwell's equations with inhomogeneous dielectric media where the electric fields are discontinuous across the dielectric interface. The new algorithm is derived based upon the integral version of the Maxwell's equations as well as the relationship between the electric fields across the interface. To resolve the instability issue of Yee's scheme (staircasing) caused by discontinuous permittivity across the interface, our algorithm revises the permittivities and makes some corrections to the scheme for the cells around the interface. It is also an improvement over the contour-path effective permittivity algorithm by including some extra terms in the formulas. The scheme is validated in solving the scattering of a dielectric cylinder with exact solution from Mie theory and is then compared with the above contour-path method, the usual staircasing and the volume-average method. The numerical results demonstrate that the new algorithm has achieved significant improvement in accuracy over other methods. Furthermore, the algorithm has a simple structure and can be merged into current FDTD software packages easily. The C++ source code for this paper is provided as supporting information for public access.  相似文献   

9.
10.
A new stress-pressure-displacement formulation for the planar elasticity equations is proposed by introducing the auxiliary variables, stresses, and pressure. The resulting first-order system involves a nonnegative parameter that measures the material compressibility for the elastic body. A two-stage least-squares finite element procedure is introduced for approximating the solution to this system with appropriate boundary conditions. It is shown that the two-stage least-squares scheme is stable and, with respect to the order of approximation for smooth exact solutions, the rates of convergence of the approximations for all the unknowns are optimal both in the H1-norm and in the L2-norm. Numerical experiments with various values of the parameter are examined, which demonstrate the theoretical estimates. Among other things, computational results indicate that the behavior of convergence is uniform in the nonnegative parameter. © 1998 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 14: 297–315, 1998  相似文献   

11.
In the case of nonlinear elastic quasitransverse waves in composite media described by nonlinear hyperbolic equations, we study the nonuniqueness problem for solutions of a standard self-similar problem such as the problem of the decay of an arbitrary discontinuity. The system of equations is supplemented with terms describing dissipation and dispersion whose influence is manifested in small-scale processes. We construct solutions numerically and consider self-similar asymptotic approximations of the obtained solution of the equations with the initial data in the form of a “spreading” discontinuity for large times. We find the regularities for realizing various self-similar asymptotic approximations depending on the choice of the initial conditions including the dependence on the form of the functions determining the small-scale smoothing of the original discontinuity. __________ Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 147, No. 2, pp. 240–256, May, 2006.  相似文献   

12.
For the Poisson equation on rectangular and brick meshes it is well known that the piecewise linear conforming finite element solution approximates the interpolant to a higher order than the solution itself. In this article, this type of supercloseness property is established for a special interpolant of the Q2 ? P element applied to the 3D stationary Stokes and Navier‐Stokes problem, respectively. Moreover, applying a Q3 ? P postprocessing technique, we can also state a superconvergence property for the discretization error of the postprocessed discrete solution to the solution itself. Finally, we show that inhomogeneous boundary values can be approximated by the Lagrange Q2‐interpolation without influencing the superconvergence property. Numerical experiments verify the predicted convergence rates. Moreover, a cost‐benefit analysis between the two third‐order methods, the post‐processed Q2 ? P discretization, and the Q3 ? P discretization is carried out. © 2004 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2005  相似文献   

13.
本文主要考虑非稳态电导介质的Maxwell 方程组. 本文考查通过有限组的边界区域观测值决定关于本构方程中系数ε, ζ, μ 和电导率系数σ 的反问题, 利用Carleman 估计证明该反问题的Lipschitz稳定性.  相似文献   

14.
A stable iterative solver for the simulation of optical waves in metals using finite difference frequency domain (FDFD) method is presented. The corresponding discretization of Maxwell's equations enables simulating electromagnetic waves in structures when materials with negative permittivity are involved. Convergence of the iterative solver is proved for positive and negative permittivities. Numerical results are presented for a thin‐film silicon solar cell structure containing silver back contact. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
In this work, a multiscale finite element method is proposed for the stationary incompressible Navier-Stokes equations. And the inf-sup stability of the method for the P1/P1 triangular element is established. The optimal error estimates are obtained.  相似文献   

16.
Finite element methods are used to solve a coupled system of nonlinear partial differential equations, which models incompressible miscible displacement in porous media. Through a backward finite difference discretization in time, we define a sequentially implicit time-stepping algorithm that uncouples the system at each time-step. The Galerkin method is employed to approximate the pressure, and accurate velocity approximations are calculated via a post-processing technique involving the conservation of mass and Darcy's law. A stabilized finite element ( SUPG ) method is applied to the convection–diffusion equation delivering stable and accurate solutions. Error estimates with quasi-optimal rates of convergence are derived under suitable regularity hypotheses. Numerical results are presented confirming the predicted rates of convergence for the post-processing technique and illustrating the performance of the proposed methodology when applied to miscible displacements with adverse mobility ratios. © 1998 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 14: 519–548, 1998  相似文献   

17.
Shumin Li 《Applicable analysis》2013,92(11):2335-2356
In this article, we consider Maxwell's equations in an isotropic, inhomogeneous and non-stationary medium. We discuss an inverse problem of determining the t-independent components of the coefficients ?, μ in the constitutive relations from a finite number of interior measurements. We prove a Lipschitz stability estimate for the inverse problem by applying the argument on the basis of Carleman estimate.  相似文献   

18.
We consider the generalized Forchheimer flows for slightly compressible fluids. Using Muskat's and Ward's general form of Forchheimer equations, we describe the fluid dynamics by a nonlinear degenerate parabolic equation for the density. We study Galerkin finite elements method for the initial boundary value problem. The existence and uniqueness of the approximation are proved. A prior estimates for the solutions in , time derivative in and gradient in , with a∈(0,1) are established. Error estimates for the density variable are derived in several norms for both continuous and discrete time procedures. Numerical experiments using backward Euler scheme confirm the theoretical analysis regarding convergence rates. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

19.
In this article we present an analysis of a finite element method for solving two‐dimensional unsteady compressible Navier‐Stokes equations. Under the time‐stepping size restriction Δt ≤ Ch, we prove the existence and uniqueness of the numerical solution and obtain an a prior error estimate uniform in time. © 2003 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 19: 152–166, 2003  相似文献   

20.
The energy‐conserved splitting finite‐difference time‐domain (EC‐S‐FDTD) method has recently been proposed to solve the Maxwell equations with second order accuracy while numerically keep the L2 energy conservation laws of the equations. In this paper, the EC‐S‐FDTD scheme for the 3D Maxwell equations is proved to be energy‐conserved and unconditionally stable in the discrete H1 norm. The EC‐S‐FDTD scheme is of second‐order accuracy both in time step and spatial steps, which suggests the super‐convergence of this scheme in the discrete H1 norm. And the divergence of the electric field of the EC‐S‐FDTD scheme in the discrete L2 norm is second‐order accurate. Numerical experiments confirm our theoretical analysis. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号