首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The title compound, [Cu2(C9H10NO3)2(NO3)2(C10H8N2)(H2O)2]n, contains CuII atoms and l ‐tyrosinate (l ‐tyr) and 4,4′‐bipyridine (4,4′‐bipy) ligands in a 2:2:1 ratio. Each Cu atom is coordinated by one amino N atom and two carboxylate O atoms from two l ‐tyr ligands, one N atom from a 4,4′‐bipy ligand, a monodentate nitrate ion and a water molecule in an elongated octahedral geometry. Adjacent Cu atoms are bridged by the bidentate carboxylate groups into a chain. These chains are further linked by the bridging 4,4′‐bipy ligands, forming an undulated chiral two‐dimensional sheet. O—H...O and N—H...O hydrogen bonds connect the sheets in the [100] direction. This study offers useful information for the engineering of chiral coordination polymers with amino acids and 4,4′‐bipy ligands by considering the ratios of the metal ion and organic components.  相似文献   

2.
In the coordination compound poly[diaqua(μ2‐4,4′‐bipyridine)(μ2‐4‐carboxylatocinnamato)nickel(II)], [Ni(C10H6O4)(C10H8N2)(H2O)2]n, both the 4‐carboxylatocinnamate and 4,4′‐bipyridine (4,4′‐bpy) ligands act as bidentate bridges, connecting the NiII centres in an octahedral coordination geometry into a two‐dimensional (4,4) layer. Each layer polycatenates two other identical layers, thus giving a rare 2D → 3D polycatenating network (2D and 3D are two‐ and three‐dimensional, respectively), with a mutually parallel arrangement of the layers. The chiral 4,4′‐bpy ligands link the NiII centres into chiral chains, thus introducing chirality into the layer and the resulting 3D network.  相似文献   

3.
The title compound, [Mn3Fe6(C5H5)6(C6H4O2)6(C10H8N2)(H2O)2]n, consists of two crystallographically unique MnII centers. One is situated on an inversion center and is octa­hedrally coordinated by two N atoms from two bridging 4,4′‐bipyridine (4,4′‐bipy) ligands and four O atoms, two from different bridging ferrocenecarboxyl­ate (μ2‐FcCOO; Fc is ferrocene) units and two from aqua ligands. The two halves of each 4,4′‐bipy ligand are related by a center of symmetry. The second MnII center is in a strongly distorted tetra­gonal–pyramidal geometry, coordinated by five O atoms, three from three μ2‐FcCOO units and two from a fourth, chelating, η2‐FcCOO unit. The FcCOO units function as bridging ligands to adjacent MnII centers, leading to the formation of linear ⋯Mn1Mn2Mn2Mn1⋯ chains. Adjacent chains are further bridged by 4,4′‐bipy ligands, resulting in a two‐dimensional layered polymer.  相似文献   

4.
The title compound, [CoII(C10H8O6)(C10H8N2)(H2O)2]n, was obtained by the hydro­thermal reaction of CoSO4 with benzene‐1,4‐dioxy­di­acetate [systematic name: p‐phenyl­ene­bis­(oxy­acetate)] and 4,4′‐bi­pyridine (4,4′‐bpy). The Co atom lies at an inversion center and the benzene‐1,4‐dioxydiacetate and 4,4′‐bipyridine moieties lie about other inversion centers. The benzene‐1,4‐dioxydiacetate ligands bridge the octahedral CoII coordination centers, forming a one‐dimensional zigzag chain. The chains are further bridged by 4,4′‐bpy ligands, forming a novel two‐dimensional supramolecular architecture. Hydro­gen‐bonding interactions between the coordinated water mol­ecules and the carboxyl­ate O atoms lead to the formation of a three‐dimensional network structure.  相似文献   

5.
catena‐Poly[[[tetra­aqua­nickel(II)]‐μ‐4,4′‐bipyridine‐κ2N:N′] thio­sulfate dihydrate], {[Ni(C10H8N2)(H2O)4]S2O3·2H2O}n, (I), and catena‐poly[[[tetra­aqua­nickel(II)]‐μ‐4,4′‐bipyridine‐κ2N:N′] sulfate methanol solvate monohydrate], {[Ni(C10H8N2)(H2O)4]SO4·CH4O·H2O}n, (II), are built up of {[Ni(4,4′‐bipy)(H2O)4]2+}n chains (4,4′‐bipy is 4,4′‐bipyridine) inter­woven in an unusual P31 fashion. Voids are filled by the corresponding counter‐anions and solvate mol­ecules, defining a complex three‐dimensional network surrounding them. In both structures, the cationic chains evolve around a set of twofold axes passing through the NiII ions and bis­ecting the aromatic amines through their N (and their opposite C) atoms.  相似文献   

6.
The title complex, {[Cd(C8H11O4)2(C10H8N2)(H2O)]·H2O}n, consists of linear chains formed through 4,4′‐bipyridine ligands linking seven‐coordinated CdII ions. Each CdII ion is in a distorted penta­gonal–bipyramidal environment, coordinated by one water ligand, two 4‐carboxy­cyclo­hexane‐1‐carboxyl­ate ligands and one bridging 4,4′‐bipyridine ligand to generate linear chains. The water mol­ecules and the Cd atom on one side, and the 4,4′‐bipyridine unit on the other, are bisected by two sets of twofold axes. The carboxylate group of the 4‐carboxy­cyclo­hexane‐1‐carboxyl ligand chelates a CdII ion, while the (protonated) carboxyl group forms hydrogen bonds with adjacent chains, resulting in a layered structure. This is the first reported occurrence of a dicarboxycyclo­hexane ligand exhibiting a non‐bridging coordination mode.  相似文献   

7.
The structure of the title compound, [NiCu(CN)4(C10H8N2)(H2O)2]n or [{Cu(H2O)2}(μ‐C10H8N2)(μ‐CN)2{Ni(CN)2}]n, was shown to be a metal–organic cyanide‐bridged framework, composed essentially of –Cu–4,4′‐bpy–Cu–4,4′‐bpy–Cu– chains (4,4′‐bpy is 4,4′‐bipyridine) linked by [Ni(CN)4]2− anions. Both metal atoms sit on special positions; the CuII atom occupies an inversion center, while the NiII atom of the cyanometallate sits on a twofold axis. The 4,4′‐bpy ligand is also situated about a center of symmetry, located at the center of the bridging C—C bond. The scientific impact of this structure lies in the unique manner in which the framework is built up. The arrangement of the –Cu–4,4′‐bpy–Cu–4,4′‐bpy–Cu– chains, which are mutually perpendicular and non‐intersecting, creates large channels running parallel to the c axis. Within these channels, the [Ni(CN)4]2− anions coordinate to successive CuII atoms, forming zigzag –Cu—N[triple‐bond]C—Ni—C[triple‐bond]N—Cu– chains. In this manner, a three‐dimensional framework structure is constructed. To the authors' knowledge, this arrangement has not been observed in any of the many copper(II)–4,4′‐bipyridine framework complexes synthesized to date. The coordination environment of the CuII atom is completed by two water molecules. The framework is further strengthened by O—H...N hydrogen bonds involving the water molecules and the symmetry‐equivalent nonbridging cyanide N atoms.  相似文献   

8.
In the title compound, {[Co(C14H8N2O5)(C10H8N2)]·3H2O}n, the CoII cation is five‐coordinated with a slightly distorted trigonal–bipyramidal geometry, and the 5‐isonicotinamidoisophthalate ligands link CoII atoms into a layered structure. These two‐dimensional arrays are further pillared by rod‐like 4,4′‐bipyridine ligands to give a three‐dimensional framework with pcu (primitive cubic) topology. The magnetic and adsorption properties of the title compound are also discussed.  相似文献   

9.
The reaction of Cu(NO3)2·3H2O with 2,4′‐oxybis(benzoic acid) and 4,4′‐bipyridine under hydrothermal conditions produced a new mixed‐ligand two‐dimensional copper(II) coordination polymer, namely poly[[(μ‐4,4′‐bipyridine‐κ2N ,N ′)[μ‐2,4′‐oxybis(benzoato)‐κ4O 2,O 2′:O 4,O 4′]copper(II)] monohydrate], {[Cu(C14H8O5)(C10H8N2)]·H2O}n , which was characterized by elemental analysis, IR spectroscopy, thermogravimetric analysis and single‐crystal X‐ray diffraction. The X‐ray diffraction crystal structure analysis reveals that the CuII ions are connected to form a two‐dimensional wave‐like network through 4,4′‐bipyridine and 2,4′‐oxybis(benzoate) ligands. The two‐dimensional layers are expanded into a three‐dimensional supramolecular structure through intermolecular O—H…O and C—H…O hydrogen bonds. Furthermore, magnetic susceptibility measurements indicate that the complex shows weak antiferromagnetic interactions between adjacent CuII ions.  相似文献   

10.
A novel cadmium(II) coordination polymer, poly[[[bis­(4,4′‐bipyridine)cadmium(II)]‐μ3‐4,4′‐dicarboxy­biphenyl‐3,3′‐di­carboxyl­ato] 0.35‐hydrate], {[Cd(C16H8O8)(C10H8N2)2]·0.35H2O}n, was obtained by reaction of Cd(CH3COO)2·3H2O, 4,4′‐bipyridine (4,4′‐bpy) and biphenyl‐3,3′,4,4′‐tetra­car­boxylic acid (H4L) under hydro­thermal conditions. Each CdII atom lies at the centre of a distorted octa­hedron, coordinated by four O atoms from three H2L2− ligands and N atoms from two monodentate 4,4′‐bpy ligands. Each H2L2− ligand coordinates to three CdII atoms through two carboxyl­ate groups, one acting as a bridging bidentate ligand and the other in a chelating bidentate fashion. Two Cd atoms, two H2L2− anions and four 4,4′‐bpy ligands form a ring dimer node, which links into an extended broad zonal one‐dimensional chain along the c axis.  相似文献   

11.
A novel supramolecular framework, catena‐poly[[[aqua(2‐phenylquinoline‐4‐carboxylato‐κO)silver(I)]‐μ‐4,4′‐bipyridine‐κ2N:N′] dihydrate], {[Ag(C16H10NO2)(C10H8N2)(H2O)]·2H2O}n, has been synthesized and structurally characterized. The AgI centres are four‐coordinated and bridged by 4,4′‐bipyridine (4,4′‐bipy) ligands to form a one‐dimensional Ag–bipy chain. The Ag–bipy chains are further linked together by intermolecular O—H...O and O—H...N hydrogen‐bonding interactions between adjacent chains, resulting in a three‐dimensional framework.  相似文献   

12.
In the title complex, {[Mn(C4O4)(C10H8N2)(H2O)]·H2O}n, each MnII ion has a distorted octa­hedral coordination formed by two N atoms of a 2,2′‐bipyridine ligand, three carboxyl O atoms of three different acetyl­ene­dicarboxyl­ate ligands and one coordinated water mol­ecule. The acetyl­ene­dicarboxyl­ate ligands act in a tridentate mode connecting adjacent MnII ions and constructing a two‐dimensional structure which can be regarded as an unusual plywood‐like stacked network.  相似文献   

13.
The polymeric title complex, {[Mn(C4H4O4)(C10H8N2)(H2O)]·0.5C10H8N2}n, possesses a three‐dimensional open‐framework structure, with the solvate 4,4′‐bi­pyridine (bipy) mol­ecules, which lie around centers of inversion, clathrated in the channels of the framework. The MnII center is surrounded by three succinate (succ) ligands, one water mol­ecule and two bipy ligands, and displays a slightly distorted octahedral coordination environment, with cis angles ranging from 84.14 (12) to 96.56 (11)°. Each succ dianion coordinates to three MnII atoms, thus acting as a bridging tridentate ligand; in turn, the MnII atoms are bridged by three succ ligands, thus forming a two‐dimensional Mn–succ sheet pillared by the bridging bipy ligands. Two hydrogen‐bonding interactions, involving the water mol­ecules and the carboxy O atoms of the succ ligands, are present in the crystal structure.  相似文献   

14.
In the title coordination compound, [Mn(C8H10O4)(C14H14N4)(H2O)2]n, each MnII centre occupies an inversion centre. The 1,4‐bis(imidazol‐1‐ylmethyl)benzene (1,4‐bix) ligand and the trans‐cyclohexane‐1,4‐dicarboxylate dianion (chdc) both function in bridging modes, linking adjacent MnII centres into a two‐dimensional four‐connected (4,4) network. These two‐dimensional layers are stacked in a parallel mode. Hydrogen bonds between water molecules and carboxylate O atoms link neighbouring (4,4) networks, yielding a three‐dimensional α‐polonium net.  相似文献   

15.
The title complex, {[Ni(C15H11N4O2S)2(C10H8N2)(H2O)2]·H2O}n, was synthesized by the reaction of nickel chloride, 4‐{[(1‐phenyl‐1H‐tetrazol‐5‐yl)sulfanyl]methyl}benzoic acid (HL) and 4,4′‐bipyridine (bpy) under hydrothermal conditions. The asymmetric unit contains two half NiII ions, each located on an inversion centre, two L ligands, one bpy ligand, two coordinated water molecules and one unligated water molecule. Each NiII centre is six‐coordinated by two monodentate carboxylate O atoms from two different L ligands, two pyridine N atoms from two different bpy ligands and two terminal water molecules, displaying a nearly ideal octahedral geometry. The NiII ions are bridged by 4,4′‐bipyridine ligands to afford a linear array, with an Ni...Ni separation of 11.361 (1) Å, which is further decorated by two monodentate L ligands trans to each other, resulting in a one‐dimensional fishbone‐like chain structure. These one‐dimensional fishbone‐like chains are further linked by O—H...O, O—H...N and C—H...O hydrogen bonds and π–π stacking interactions to form a three‐dimensional supramolecular architecture. The thermal stability of the title complex was investigated via thermogravimetric analysis.  相似文献   

16.
In the title novel mixed‐valence copper complex, {[Cu2(C8H2NO6)(C10H8N2)]·H2O}n, the CuI and CuII ions are linked by 4,4′‐bipyridine (bpy) and pyridine‐2,4,6‐tricarboxyl­ate (ptc) ligands into corrugated layers, which are assembled via inter­layer C—H⋯O hydrogen bonds to give a three‐dimensional supra­molecular architecture.  相似文献   

17.
The CoII cation in poly[[aqua(μ‐benzene‐1,2‐dicarboxylato‐κ3O1,O2:O1)(μ‐4,4′‐bipyridine‐κ2N:N′)cobalt(II)] trihydrate], {[Co(C8H4O4)(C10H8N2)(H2O)]·3H2O}n, is octahedrally coordinated by two N atoms of two 4,4′‐bipyridine ligands, three O atoms from phthalate anions and a fourth O atom from a coordinated water molecule. The packing consists of planes of coordination polymers linked by hydrogen bonds mediated by three solvent water molecules; the linkage is achieved by the water molecules forming intricate oligomeric clusters which also involve the O atoms of the phthalate ligands.  相似文献   

18.
The title ionic compound, [Ni(C12H12N2)(H2O)4]SO4·H2O, is composed of an NiII cation coordinated by a chelating 4,4′‐dimethyl‐2,2′‐bipyridine ligand via its two N atoms [mean Ni—N = 2.056 (2) Å] and by four aqua ligands [mean Ni—O = 2.073 (9) Å], the net charge being balanced by an external sulfate anion. The whole structure is stabilized by a solvent water molecule. Even though the individual constituents are rather featureless, they generate an extremely complex supramolecular structure consisting of a central hydrogen‐bonded two‐dimensional hydrophilic nucleus made up of complex cations, sulfate anions and coordinated and solvent water molecules, with pendant hydrophobic 4,4′‐dimethyl‐2,2′‐bipyridine ligands which interact laterally with their neighbours viaπ–π interactions. The structure is compared with closely related analogues in the literature.  相似文献   

19.
The PbII cation in the title compound, [Pb2(C14H4N2O8)]n, is seven‐coordinated by one N atom and six O atoms from four 4,4′‐bipyridine‐2,2′,6,6′‐tetracarboxylate (BPTCA4−) ligands. The geometric centre of the BPTCA4− anion lies on an inversion centre. Each pyridine‐2,6‐dicarboxylate moiety of the BPTCA4− ligand links four PbII cations via its pyridyl N atom and two carboxylate groups to form two‐dimensional sheets. The centrosymmetric BPTCA4− ligand then acts as a linker between the sheets, which results in a three‐dimensional metal–organic framework.  相似文献   

20.
The title dicadmium compound, [Cd2(C10H8N2)5(H2O)6](C7H6NO2)2(ClO4)2·2H2O, is located around an inversion centre. Each CdII centre is coordinated by three N atoms from three different 4,4′‐bipyridine ligands and three O atoms from three coordinating water molecules in a distorted octahedral coordination environment. In the dicadmium cation unit, one 4,4′‐bipyridine (4,4′‐bipy) molecule acts as a bidentate bridging ligand between two Cd metal ions, while the other four 4,4′‐bipy molecules act only as monodentate terminal ligands, resulting in a rare `H‐type' [Cd2(C10H8N2)5(H2O)6] host unit. These host units are connected to each other viaπ–π stacking interactions, giving rise to a three‐dimensional supramolecular grid network with large cavities. The 3‐aminobenzoate anions, perchlorate anions and water molecules are encapsulated in the cavities by numerous hydrogen‐bonding interactions. To the best of our knowledge, this is the first example of a coordination compound based on both 4,4′‐bipyridine ligands together with discrete 3‐aminobenzoate anions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号